What are the benefits of CMOS based machine vision cameras vs CCD?

Industrial machine vision cameras historically have used CCD image sensors, but there is a transition in the industrial imaging marketplace to move to CMOS imagers. Why is this?.. Sony who is the primary supplier of image sensors announced in 2015 it will stop making CCD image sensors and is already past its last time buy. The market was nervous at first until we experienced the new CMOS image sensor designs. The latest Sony Pregius Image sensors provide increased performance with lower cost making it compelling to make changes to systems using older CCD image sensors.

click here for sony pregius image sensors
Listing of all Sony Pregius Image sensors with filter selection tools

What is the difference between CCD and CMOS image sensors in machine vision cameras?

Both produce an image by taking light energy (photons) and convert them into an electrical charge, but the process is done very differently.

In CCD image sensors, each pixel collects light, but then is moved across the circuit via current through vertical and horizontal shift registers. The light level is then sampled in the read out circuitry. Essentially its a bucket brigade to move the pixel information around which takes time and power.

In CMOS sensors, each pixel has the read out circuitry located at the photosensitive site. The analog to digital circuit samples the information very quickly and eliminates artifacts such as smear and blooming. The pixel architecture has also radically changed moving the photosensitive electronics to be more efficient in collecting light.

CCD vs CMOS
Courtesy of Automated Imaging Association

6 advantages of CMOS image sensors vs CCD

There are many advantages of CMOS versus CCDs and outlined below:
1 – Higher Sensitivity due to the latest pixel architecture which is beneficial in lower light applications.
2 – Lower dark noise will contribute to a higher fidelity image.
3 – Pixel well depth (saturation capacity) is improved providing higher dynamic range.
4 – Lower Power consumption. This becomes important as lower heat dissipation equals a cooler camera and less noise.
5 – Lower cost! – 5 Megapixel cameras used to cost ~ $2500 and only achieve 15 fps and now cost ~ $450 with increased frame rates.
6 – Smaller pixels reduce the sensor format decreasing the lens cost.

Click to contact

What CMOS image sensors cross over from existing CCD image sensors?

1stVision can help in the transition starting with crossing over CCDs to CMOS using the following cross reference chart. Once identified, use the camera selector and select the sensor from the pull down menu.

Sony CCD to CMOS cross reference chart

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

Ph:  978-474-0044  /  info@1stvision.com  / www.1stvision.com

Related Blogs & Technical resources

What is the fastest 2.4MP GigE camera at the lowest price point? Dalsa’s new Nano M1950 / C1950!

Dalsa Nano

Dalsa NanoTeledyne Dalsa has released the latest addition to the Genie Nano family.  Introducing the Nano M1950 and C1950 cameras using the Sony Pregius IMX392 image sensor.  This is a great replacement for older Sony ICX818 CCD sensors.

These latest Nano models offer 2.4 MP (1936 x 1216) resolution with a GigE interface in color and monochrome with up to 102 frames per second utilizing TurboDrive.

What’s so interesting about the Nano M1950 and C1950 models?

2.4 MP resolution with the speed of the popular IMX174, but at the price of the IMX249:  
Sony Pregius image sensors in a given resolution has created paired sensors, one being faster at a higher price and one slower at a lower price.  The Nano M1940 / C1940 cameras use the IMX174 which is a great sensor and historically had the fastest speed at 2.4MP in GigE, but at a premium.  We could opt for the Nano M1920 / C1920 cameras with the IMX249 at a lower price, but sacrificed speed.

Until now! – The latest Nano M1950 / C1950 models with the IMX392 provides the higher speed of the M1940 / C1940 cameras, but at the lower price of the Nano M1920 / C1920 cameras. 

2.4MP resolution using a 1 /2 in sensor format, provides cost savings on lenses.
Thanks to the Sony Pregius Gen 2 pixel architecture, the pixel size is 3.45um, allowing the same resolution and eliminating the added cost of larger format lenses found in the IMX174 / IMX249 sensors which were 1 / 1.2″ formats.

Contact 1stVision to get our recommendations on lens series designed for the 3.45um pixel pitch. 

When would you use the Sony Pregius IMX392 versus the IMX174 and IMX249 sensors? 

The Sony Pregius IMX174 / IMX249 images still have an incredible dynamic range due to the pixel architecture found in the first generation image sensors.  (Read more here on Gen 1 vs Gen 2).  If you need dynamic range, with large well depths of 30Ke-, then use the IMX174 / IM249 sensors.

I’m so confused!   Where can I get the specs on the new Nano M1950 / C1950, understand what sensors are in what cameras and get a quote?

The tough part today, is that there a ton of model #’s in the Sony Pregius sensors lineup and in turn camera product lines.  Here’s a brief table to help with links to spec’s, related image sensors and a link to get a quote.

Sensor          Model 
IMX174         Nano M1940 / C1940          GET QUOTE
IMX249        Nano M1920 / C1920           GET QUOTE
IMX392        Nano M1950 / C1950           GET QUOTE

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

Contact us to help in the specification and providing pricing

Ph:  978-474-0044  /  info@1stvision.com  / www.1stvision.com

Related Blogs & Technical resources

Imaging Quick ref Poster
Quick Reference Imaging poster download

Sony Pregius sensor “Generations” – What do those differences mean for machine vision?

Teledyne Dalsa TurboDrive 2.0 breaks past GigE limits now with 6 levels of compression

What is a lens optical format? Can I use any machine vision camera with any format? NOT!

Sony Pregius sensor “Generations” – What do those differences mean for machine vision?

Sony Pregius

Pregius
Courtesy of Sony
Machine Vision cameras continue to reap the benefits of the latest CMOS image sensor technology since Sony announced the discontinuation of CCD’s.  We have been testing and comparing various sensors over the years and have always come back to using Sony Pregius sensors when dynamic range and sensitivity is needed.

If you’ve been watching the technology shift from CCD’s to CMOS, you have probably also seen a ton of new image sensor names within the “Generations”.  Honestly, its hard to keep track of all of Sony’s part numbers, so we will try to give you some insight into the progression of Sony’s Pregius image sensors used in industrial machine vision cameras.

1 – First, how can I tell if its a Sony Pregius generation sensor?

Sony has prefixes of the image sensors which make it easy to identify if its an ExView HAD sensor or Pregius sensor.  Previous CCD, EXViewHAD sensors primarily in the last 10 years had a prefix of “ICX”.  Example:   ICX285, which was a great sensor back in the day.   All new Sony Pregius sensors have a prefix of “IMX”    Example:  IMX174.. which today is one of the best for dynamic range.
1stVision’s camera selector can be filter by “Resolution” and you can scroll and see the sensors with a prefix of IMX.  CLICK HERE NOW

2 – What is the differences in the “Generations” of Sony Pregius Image sensors?

Sony Pregius Generation 1:  This primarily consisted of a 2.4MP resolution sensor with 5.86um pixels BUT had a well depth (saturation capacity) of 30Ke- and still unique in this regard within the generations.   Sony also brought the new generations to the market with “slow” and “fast” versions of the sensors at two different price points.  In this case, the IMX174 and IMX249 were incorporated into industrial machine vision cameras providing two levels of performance.  Example being Dalsa Nano M1940 (52 fps)  using IMX174 vs Dalsa Nano M1920 (39 fps) using IMX249, but the IMX249 is 40% less in price.

Sony Pregius Generation 2:  The primary goal of Sony was to expand the portfolio of Pregius sensors which consists of VGA to 12 MP image sensors.  However, the pixel size decreased to 3.45um along with well depth to ~ 10Ke-, but noise also decreased!  The smaller pixels allowed smaller format lenses to be used saving overall system cost.   However this became more taxing on lens resolution being able to resolve the 3.45um pixels!   In general it offered a great family of image sensors and in turn an abundance of machine vision industrial cameras at lower cost than CCD’s with better performance.   

1stVision’s camera selector  can be filter by “Resolution” AND pixel size that correspond to one of the generations.  You will have a list of cameras in which you can select those starting with IMX!.  I.e  All Generation 2 sensors will be 3.45um, and can narrow to a desired resolution. CLICK HERE NOW

Sony Pregius Generation 3:  Sony’s has taken the best of both the Gen 1 and Gen 2 to create Gen 3!  The pixel size increased to 4.5um increasing the well depth to 20Ke-!  This generation has the fastest data rates, dynamic range and lowest noise.  The family will expand from VGA to 7.1MP as well.  We are just starting to see Gen 3 sensors in our machine vision camera lineup and expecting more to come through 2019+.

Contact us

Sony Pregius image sensor Comparison Chart

sony comparison chart

Sony’s Pregius Product line up for machine vision industrial cameras below for reference as of April 2019

Sony Pregius product line up
Courtesy of Sony

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

Contact us to help in the specification of your imaging components 

Ph:  978-474-0044  /  info@1stvision.com  / www.1stvision.com

How can we help answer your questions about industrial imaging?  We have used several terms you may not be familiar with and would like to help in your education.  Below are some related blogs that will help.  Or contact us via email or phone number as we love to help educate our customers!

Related Blogs & Technical resources

Imaging Quick ref Poster
Quick Reference Imaging poster download

What are the attributes to consider when selecting a camera and its performance?

CCD vs CMOS industrial cameras – Learn how CMOS image sensors excel over CCD!

Related Blog posts

Dalsa Nano M2450 polarized camera: Resolving defects that are undetectable with traditional imaging!

Dalsa Polarization camera

Genie Nano cameraThe first Genie Nano camera model with a quad-polarizer filter using the Sony Pregius IMX250-MZR 5.1MP monochrome image sensor is now available.  The Teledyne Dalsa Nano M2450 camera incorporates the nanowire polarizer filter allowing detection of both the angle and amount of polarized light.

What problems can the Nano M2450 polarized camera solve?

Polarized filtering can reduce the effects of reflections and glare from multiple directions and reveal otherwise undetectable features in the target scene.  Polarization enables detection of stress, birefringence, through-reflection and glare from surfaces like glass, plastic, and metal.  Sony’s newest image sensor, with its pixel-level polarizer structure, enables the detection of both the amount and angle of polarized light across a scene. Dalsa Nano polarization camera

 

 

 

 

Four different angled polarizers (90°, 45°, 135° and 0°) are positioned on each pixel, and every block of four pixels comprises a calculation unit.Contact 1st vision for pricing

How does polarization work?  Theory of operation

Polarization direction is defined as the electrical direction.  Light, with its electrical field oscillating perpendicular to the nano wire grid, passes through the filter while that in the parallel direction is rejected.

For Polarized light, only the portion of the light vector perpendicular to the angle of the nanowire filter grid passes.

polarization filter

For example, with a wire-grid polarizer filter at 90 deg. to the maximum transmission is for polarized light at an angle of 0 deg.

polarizer filterThe polarizer filter is placed directly on the sensor’s pixel array, beneath the micro-lens array.  This design, compared to polarize filters on top of the micro lens array reduced the possibility of light at a polarized angle being misdirected into adjacent pixels (cross talk) and incorrectly detected at the wrong angle.

Dalsa polarizer filter theory

The Genie Nano’s polarizer filter on the camera sensor is a 2 x 2 pattern, with each pixel having a nanowire polarizer filter with different angles (90, 45, 135 and 0 degree’s)

The image output pattern of the monochrome camera is arranged in 2 x 2 pixel block as follows:

Pixel blocks

 

 

 

 

That is, the first line output is an alternating sequence of pixels 0 & 35 degrees, with the following line of 45 and 90 degrees.

Given the proportion of light available through these four filters, any angle of polarized light can be calculated. Any given state of polarization can be composed by two linearly polarized waves in perpendicular directions. The state of polarization is determined by the relative amplitude and difference in phase between the two component waves.

Calculations on the 2×2 filter blocks result in a single pixel for each polarizer filter angle, therefore the resulting image is one fourth the original image resolution. For example, with an original image of 2464×2056, the resulting image is 1232×1028 (original buffer width/2 and original buffer height/2) for a single polarizing angle.

resulting image

Teledyne Dalsa offers a Polarization demo user interface making it easy to test the polarization techniques for various applications.  This includes the ability to see the results of various processing algorithms with the summed images.

Dalsa Polarization demo
As part of the demo program, images can be displayed with pseudo-color mapping

In summary, the new Dalsa Nano M2450 polarized camera can help resolve defects not detected by traditional imaging!   Contact 1st Vision to arrange a camera demo in which we will provide the demo polarization software as well or discuss your application.  Or click HERE to request a quoteContact us

 

 

Need line scan?  – With the addition of the Genie Nano polarized model, Teledyne DALSA is the first company to offer polarization for both area and line scan (Piranha™4 polarization) cameras

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

Related Posts

Dalsa line scan polarization camera makes invisible visible!

Teledyne Dalsa TurboDrive 2.0 breaks past GigE limits now with 6 levels of compression