XTIUM3 PCIe Gen4 frame grabber for ultra-fast image acquisition

Frame grabbers interface between high-speed cameras and PCs to reliably transfer and buffer image data. They can also do various pre-processing and image transformations, improving throughput and reducing workload on the PC.

Teledyne DALSA is a recognized industry leader in frame grabbers and machine vision cameras. Their board-level frame grabbers are dependable and high-performance. Now there’s Teledyne DALSA’s XTIUM3-CLHS PX8 Camera Link HS Frame Grabber. It’s designed for maximum sustained throughput with high-speed image acquisition rates up to 8.6 GB/s and host transfer rates up to 12.5 GB/s.

Teledyne DALSA XTIUM3-CLHS PX8 Gen4 frame grabber PCIe for high speed vision systems

High speed data transmission

Using CLHS X-protocol, Xtium3-CLHS PX8 achieves over 97% packet efficiency with 64/66-bit encoding. With 7-lane AOC cables, maximum input data rates at cable lengths beyond 30m. Data forwarding enables real-time redistribution of data to up to 12 computers, connecting with other Xtium3-CLHS grabbers via standard AOC cables. Image courtesy Teledyne DALSA.


Optimized performance and compatibility

The Xtium3 series leverages PCIe Gen4 architecture to deliver sustained throughput of 13.2 GB/s directly to host memory, minimizing CPU overhead and accelerating image processing. Its enhanced memory design supports area and line scan, monochrome and color cameras, and offers exceptional performance for Camera Link HS® and CoaXPress® interfaces.

Teledyne DALSA line scan camera

Faster. More efficient. Higher-performance.

Thanks to Moore’s law and industry innovation, machine vision practitioners benefit from electronics components such as cameras, frame grabbers, and computers that outperform their predecessors. If you already use CLHS and prior generation frame grabbers, you may already know you need or want the XTIUM3-CLHS PX8.

Or are you at the design and brainstorming phase?

We’re always happy to provide a product quote, whether for single units or for multiples, of course. But we take pride in assisting our customers by guiding component selection across camera interfaces, sensor selection, lenses, frame grabbers, and more. Call us at 978-474-0044.

XTIUM3 family – more to follow

The XTIUM3 – CLHS PX8 is the first member of the XTIUM3 family, continuing Teledyne DALSA’s commitment to high-performance frame grabber innovation.

XTIUM3 - CLHS PX8 is the first member of the XTIUM3 family, continuing Teledyne DALSA's commitment to high-performance frame grabber innovation
Xtium3 overview – Courtesy Teledyne DALSA

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of cameraslensescablesNIC cards and industrial computers, we can provide a full vision solution!

About you: We want to hear from you!  We’ve built our brand on our know-how and like to educate the marketplace on imaging technology topics…  What would you like to hear about?… Drop a line to info@1stvision.com with what topics you’d like to know more about.

Dynamic Operating Point Optimization – Explained!

Short Wave Infrared (SWIR) imaging is enjoying double-digit growth rates, thanks to improving technologies and performance, and innovative applications. Unlike visible-light sensors, SWIR cameras can image through silicon, plastics, and other semitransparent materials. That’s really effective for many quality control applications, materials sorting and inspection, crop management, fruit sorting, medical applications, and more.

Visible vs. SWIR image pairs – Courtesy Allied Vision – a TKH Vision brand

Unlike CMOS sensors, from which high-quality images are reliably derived under wide operating conditions, SWIR sensors typically need “tuning” relative to temperature and exposure duration. First generation SWIR cameras sometimes generated images that while useful, were a bit rough and with certain limitations in the extreme. SWIR camera manufacturers have been innovating solutions to raise the performance of their cameras.

What’s the problem?

In short-wave infrared (SWIR) imaging applications, camera operation points such as exposure time, gain and bit-depth need to be adapted depending on the inspection task at hand. Image sensor defects such as defective pixels and image non-uniformities – inherent to SWIR sensors – are sensitive to the aforementioned operations points.

Unless controlled, image quality can suffer

Consider the following image:

The gray field is intentionally unexciting as a flat field baseline without a target. The white dots are undesired defect pixels, an unfortunate characteristic that one can thankfully correct through interpolation. This image is meant to show “what we do NOT want”.

The four parameters exposure setting, temperature, bit-depth, and gain may collectively be called the “Operating Point” of a SWIR sensor, as together they have a significant bearing on image quality. Through manual or automated adjustments, one can optimize image outcomes.

Harnessing variable parameters into manageable corrections – Courtesy Allied Vision – a TKH Vision brand

In this blog, we provide context for these concepts. And we introduce Dynamic Operating Point Optimization (DOPO) as an automated innovation available in the fx series of SWIR cameras offered by SVS Vistek / Allied Vision.

fx series SWIR cameras – Courtesy SVS Vistek / Allied Vision – a TKH Vision brand

Before Dynamic Operating Point Optimization (DOPO)

SWIR cameras with some image correction capabilities – prior to DOPO we’ll describe in the next section – certainly improved image quality. Largely via defect pixel correction (DPC) and non-uniformity correction (NUC).

Defect pixel correction (DPC) is achieved by replacing the “hot” or “dead” pixel value by the average value of its nearest neighbors. As long as there isn’t a cluster defect with multiple adjacent defect pixels (typically identified and rejected at manufacturing quality control), this is an effective solution.

Non-uniformity correction (NUC) is a bit more complex, but worth understanding. The non-uniformities arise in thermal imaging due to variations in sensitivity among pixels. If uncorrected, the target image could be negatively impacted with striations, ghost images, flecks, etc.

Factory configuration of each camera, before finalizing testing and shipping, adapts for the nuanced differences among individual sensors. Correction tables are created and stored onboard the camera, so that the user receives a camera that already compensates for the variations.


In reality it’s a bit more complicated

In fact defect pixels aren’t always simply hot or dead: they may appear only at certain operating points (exposure duration, temperature, gain, bit-depth, or combinations thereof).

Likewise for non-uniformity characteristics.

So that factory configuration mentioned above, while satisfactory for many applications, is a one size fits all best hope compromise, relative to the tools (then) available to the camera manufacturer and the price point the market would accept. Just as with t-shirts and socks, one size doesn’t really fit every need.

Dynamic Operating Point Optimization (DOPO)

Allied Vision has introduced dynamic operating point optimization (DOPO) to further automate SWIR cameras’ capacity to adapt to changes brought about by exposure time, temperature, gain, and bit depth. Let’s examine the graphic below to understand DOPO and the added value it delivers.

First consider the Y-axis, “Image Quality”. Looking at the flat-field gray block, clearly one would prefer the artifact-free characteristics of the upper region.

Also note the X-axis, “Sensor Temperature / Exposure Time”, for an uncooled thermal sensor. (Note that some thermal cameras do have sensor cooling options, but that’s a topic for another blog.) See the black line “No correction” sloping from upper left to lower right, and how the number of image artifacts grows markedly with exposure time. Without correction the defect pixels and sensor non-uniformities are very apparent.

Flat-field image quality with and without corrections – Courtesy Allied Vision – a TKH Vision brand

Now look at the gray lines labeled “NUC+DPC”. For a factory calibrated camera optimized for a sensor at 30 degrees Celsius and a 25ms exposure, the NUC and DPC corrections indeed optimize the image effectively – right at that particular operating point. And it’s “not bad” for exposure times of 20ms or 15ms to the left, or 30ms or 35ms to the right. But the corrections are less effective the further one gets away from that calibration point.

Finally let’s look at the zig-zag red lines labeled “DOPO”. Instead of the “one size best-guess” factory calibration, represented by the grey lines, a DOPO equipped camera is factory calibrated at up to 600 correction maps, varying each of exposure time, temperature, gain and bit depth across a range of steps, and building maps that represent all the stepwise permutations.

Takeaway: DOPO provides a set of correction tables not just one

So with DOPO providing a set of correction tables, the camera can automatically apply the best-fit correction for whatever operating point is in use. That’s the key point of DOPO. Unlike single-fit correction tables, with so many calibrated corrections under DOPO, the best-fit isn’t far off.

contact us
Give us some brief idea of your application and we will contact you to discuss camera options.

Thermal imaging with SWIR cameras – plenty of choices

There are a number of options as one selects a SWIR camera. Is your choice driven mostly by performance under extreme conditions? Size? Cost? A combination of these?

Call us at 978-474-0044. We can guide you to a best-fit solution, according to your requirements.

We might recommend a DOPO equipped camera, such as one of the fxo series SWIR cameras:

DOPO equipped SWIR cameras – Courtesy SVS Vistek / Allied Vision – a TKH Vision brand

Or you might be best-served with a Goldeye camera, in cooled or uncooled models:

Goldeye available in uncooled and cooled models – Courtesy Allied Vision – a TKH Vision brand

Or an Alvium compact camera, whether housed or modular (for embedded designs), in USB / MIPI CSI-2 or GigE interfaces.

Alvium cameras some with SWIR sensors
Alvium cameras – Courtesy Allied Vision – a TKH Vision brand

The key message of this blog is to introduce Dynamic Operating Point Optimization – DOPO – as a set of factory calibration tables and the camera’s ability to switch amongst them. An equally important takeaway is that you may or may not need DOPO for a particular thermal imaging application. There are many SWIR options, in cameras and lenses, and we can help you choose.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of cameraslensescablesNIC cards and industrial computers, we can provide a full vision solution!

About you: We want to hear from you!  We’ve built our brand on our know-how and like to educate the marketplace on imaging technology topics…  What would you like to hear about?… Drop a line to info@1stvision.com with what topics you’d like to know more about.

Opto Engineering liquid lenses for rapid focus adjustment

All of us machine vision practitioners know a thing or two about camera lenses. Some of us are optical engineers. Others are self-taught through reading and experience. Others let their systems designers choose the lens.

Ever need a fast focus change?

If your application does fine with a fixed focal lens, or a mechanically adjustable focus, that’s great. But some applications benefit from – or only become possible with – the ability to rapidly tune the focus. Enter liquid lenses, like Opto Engineering’s EL5MP and EL12MP.

EL5MP liquid lens – Courtesy Opto Engineering

Liquid lenses – from theory to commercial availability

Leonhard Euler (Euler’s equations, anyone?) did groundbreaking work in fluid dynamics in the 1700s. In 1859 Thomas Sutton used a glass sphere filled with water to create a lens. So the concepts for liquid lenses aren’t new. But they’ve only been commercialized in the last 20 years. Here’s a short video (3 minutes) featuring an early leader in liquid lenses, with a nice overview of the key concepts:

From theory to practice – a 5MP and 12MP liquid lens series

If you need fast focus (a few milliseconds) and high reliability (more than a billion cycle lifetime), Opto Engineering offers both a 5MP liquid lens series as well as a 12MP series. Each series provides several focal length options:

  • 6mm for the 5MP series only
  • 8mm for the 5MP series only
  • 12mm for BOTH the 5MP and 12MP series
  • 16mm for BOTH the 5MP and 12MP series
  • 25mm for BOTH the 5MP and 12MP series
  • 35mm for 12MP series only

Working distance coverage range

Across the two series, there are working distances on the near side from 60 – 200mm, depending on the specific model. At the far side the WD goes to infinity for each of the lenses. See the product comparison tables and data sheets at Opto Engineering EL5MP and EL12MP respectively.

More specs

The 5MP series is designed for sensors up to 2/3″. One exception: the 6mm focal length model is for sensors up to 1/1.8″.

The 12MP series is for sensors up to 1.1″.

Basis for liquid lens – Courtesy Opto Engineering
Liquid lens advantages vs. mechanical focus – Courtesy Opto Engineering

Low distortion is another advantage

Liquid lens image (left) has almost no distortion – another huge benefit – Courtesy Opto Engineering

What are the focus demands of your application?

Do you know your application’s focus requirements? Could you build a more effective application with faster focus? Reduce lens service and replacement intervals by switching from a mechanical to a liquid lens? Call us at 978-474-0044 to discuss options or get a quote.

Video presentation on Opto Engineering liquid lenses

Tradeshow presentation runs 14 minutes, if you want to do a deeper dive that way:

Courtesy Opto Engineering

Note: Over the years, various operating principles for liquid lenses have been introduced.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of cameraslensescablesNIC cards and industrial computers, we can provide a full vision solution!

About you: We want to hear from you!  We’ve built our brand on our know-how and like to educate the marketplace on imaging technology topics…  What would you like to hear about?… Drop a line to info@1stvision.com with what topics you’d like to know more about.

Ensenso 3D for logistics applications

Previously we’ve written about Ensenso series members, like the B-Series for closeup, the C-Series for color, or the whole Ensenso family (B, C, N, S, X, and XR). Or you may have read 3D scanning overviews. 3D applications are myriad, from medicine, industrial, robotics, and more.

Whether you are new to applying imaging to logistics, or looking to upgrade current systems, 3D machine vision continues to drive innovation and opportunities.

Materials handling in a warehouse – Courtesy IDS Imaging
Contact us

In this piece we focus on logistics. Consider:

Conveyor object inspection and classificationdepth data enables detection, sorting, and volume measurement
Bin-picking and parts handlingaccurate depth perception helps robots identify and locate items in bulk containers
(De-) Palletizing automation3D vision supports robot arms in stacking and unstacking pallets
Loading / Unloading trucks3D object localization improves automation
Some popular logistics tasks supported by 3D imaging

Application areas

  • Detect and recognize
  • Bin picking
  • De-palletizing

Detect and recognize

The ability to accurately detect moving objects to select, sort, verify, steer, or count can enhance (or create new) applications. Ensenso C’s high-luminance projector enables high pattern contrast for single-shot images. Video courtesy of IDS Imaging.


Bin picking

Regardless of a robot’s gripping sensitivity, speed, and range of motion, 3D imaging accuracy is central to success. Ensenso C’s integrated RGB sensor can make all the difference for color-dependent applications. Video courtesy of IDS Imaging.


De-palletize

De-palletizing might seem like a straightforward operation, but must detect object size, rotation and position even with different and densely stacked goods. Ensenso supports all those requirements – even from a distance. Video courtesy of IDS Imaging.


How does stereo imaging work?

Two-eyed humans and other animals, as well as two-camera stereo systems, use triangulation to achieve depth perception. If a given point on an object’s surface is offset more from one sensor than another, the collection of all such measurements can be used to create a point cloud model of the 3D scene.

Note the differential offsets for the projection beams of two cones – Courtesy IDS Imaging

You’ve got options – multiple stereo imaging setups

IDS Imaging Ensenso 3D cameras and camera systems are built for industrial 3D imaging with a GigE interface for ease of setup. There are monochrome and color options, as well as hybrid/blended systems. Short-distance capabilities to a few millimeters. Long-distance systems with WD to 5 meters. Modular pre-housed systems. And ruggedized systems for harsh environments.

Ensenso product family – Courtesy IDS Imaging
Short distance applications – Courtesy IDS Imaging
Ensenso XR with working distance to 5m – Courtesy IDS Imaging

Want some help with your logistics systems planning?

Call us at 978-474-0044. Our sales engineers come from diverse machine vision backgrounds, and we stake our reputation on helping clients select the best components and systems.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of cameraslensescablesNIC cards and industrial computers, we can provide a full vision solution!

About you: We want to hear from you!  We’ve built our brand on our know-how and like to educate the marketplace on imaging technology topics…  What would you like to hear about?… Drop a line to info@1stvision.com with what topics you’d like to know more about.