

Application Note

Cross-compiling Vimba X Source Code to ARM
Document V1.0.0

October 2022

Scope of this document
Vimba X offers numerous possibilities to cross-compile source code from a PC to an ARM64 board.
This document describes a tried and tested easy solution.

Introduction
Vimba X runs on several platforms and is source code compatible across all of them. This document refers to
a common and uncomplicated solution: Most users develop on a Linux PC with Ubuntu. Nevertheless, you
can also use a different distribution.

Note that if you cross-compile any source code from Windows to an ARM64 board with Linux, you generally
have to be aware of potential platform dependencies. Although Vimba X is fully compatible, you might have
to adapt your code to the different system libraries. This is always the case and independent of the API.

Recommended prerequisites
• PC with Linux and Vimba X for ARM64
• ARM64 board or SOM with Linux and the same Vimba X for ARM64 version as on the PC
• Cross-compilation toolchain, e.g., Linaro (includes all required libraries)

Selecting a cross-compilation toolchain
In contrast to building applications on your host system, cross-compiling requires a compiler that creates
binaries for the target instead of the host. Such a compiler and the corresponding C/C++ standard libraries
are part of a cross-compilation toolchain. We have tested several toolchains and recommend the Linaro
suite.

When using CMake as your build tool, you can provide a CMake toolchain file to specify a cross-compiling
toolchain. The Vimba X C and C++ APIs can easily be used in a CMake project. For details, see the examples
provided with Vimba X.

If you use a different toolchain than Linaro, note that the C/C++ runtime library versions of this toolchain and
on the ARM64 board must be compatible with each other. Vimba X requires a toolchain that targets the GNU
triplet ‘aarch64-linux-gnu’. A gcc compiler 8.4.0 and the corresponding C and C++ runtime libraries are
recommended.

To identify compatible libc versions on your ARM6464 target, use the command:
strings /usr/aarch64-linux-gnu/lib/libc.so.6 | grep GLIBC

Cross-compiling to ARM
To cross-compile from a Linux PC to an ARM64 board:

1. Make sure the same Vimba X versions are installed on the PC and on the ARM64 board.

2. On your host PC, unpack the toolchain to your hard drive, e.g., /home/foo/linaro. If you use a
different toolchain, follow its installation instructions.

3. Create a CMake toolchain file named ‘aarch64-linux-gnu.toolchain.cmake’.
The contents should look similar to this example:

4. Configure a Vimba X example with cmake and provide a toolchain file by setting the variable
CMAKE_TOOLCHAIN_FILE e.g. on the command line:
-DCMAKE_TOOLCHAIN_FILE=/path/to/toolchain/aarch64-linux-gnu.toolchain.cmake

The default settings of the Linaro cross-compiler enable it to locate the according standard libraries
automatically.

5. Build the project and transfer the generated binaries to the ARM64 board, e.g., by copying them to
its SD card.

6. Execute the cross-compiled binaries on the ARM64 board.

Now your application runs on the ARM64 board.

Disclaimer
All trademarks are acknowledged as property of their respective owners. Copyright © 2022 Allied Vision Technologies

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR aarch64)

set(CMAKE_C_COMPILER "/home/foo/linaro/bin/aarch64-linux-gnu-gcc")
set(CMAKE_CXX_COMPILER "/home/foo/linaro/bin/aarch64-linux-gnu-g++")

set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

set(CMAKE_C_FLAGS "-march=ARM64v8-a")
set(CMAKE_CXX_FLAGS "-march=ARM64v8-a")

cache flags
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}" CACHE STRING "c flags")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}" CACHE STRING "c++ flags")

	Introduction
	Vimba X runs on several platforms and is source code compatible across all of them. This document refers to a common and uncomplicated solution: Most users develop on a Linux PC with Ubuntu. Nevertheless, you can also use a different distribution.
	Note that if you cross-compile any source code from Windows to an ARM64 board with Linux, you generally have to be aware of potential platform dependencies. Although Vimba X is fully compatible, you might have to adapt your code to the different syste...
	Recommended prerequisites
	 PC with Linux and Vimba X for ARM64
	 ARM64 board or SOM with Linux and the same Vimba X for ARM64 version as on the PC
	 Cross-compilation toolchain, e.g., Linaro (includes all required libraries)
	Selecting a cross-compilation toolchain
	In contrast to building applications on your host system, cross-compiling requires a compiler that creates binaries for the target instead of the host. Such a compiler and the corresponding C/C++ standard libraries are part of a cross-compilation tool...
	When using CMake as your build tool, you can provide a CMake toolchain file to specify a cross-compiling toolchain. The Vimba X C and C++ APIs can easily be used in a CMake project. For details, see the examples provided with Vimba X.
	If you use a different toolchain than Linaro, note that the C/C++ runtime library versions of this toolchain and on the ARM64 board must be compatible with each other. Vimba X requires a toolchain that targets the GNU triplet ‘aarch64-linux-gnu’. A gc...
	To identify compatible libc versions on your ARM6464 target, use the command:
	Cross-compiling to ARM

