
Doc #: 3D-L-AN0002-V1 June 4, 2019 Page 1

Teledyne DALSA 880 Rue McCaffrey St-Laurent, Québec, H4T 2C7 Canada

http://www.teledynedalsa.com/Z-Trak

3D-L-AN0002: Using Z-Trak with MVTEC HALCON
HDevelop

Using Z-Trak with MVTec HALCON HDevelop
All Z-Trak Laser Profile Cameras.

Overview

Z-Trak laser profile cameras are GigE Vision compliant. As such, cameras can be used

with any image processing software that supports 16-bit image acquisition using the

GigE Vision protocol. Camera features follow the GenICam standard v3.0 (SFNC v2.3).

This application note demonstrates how to acquire range images from a Z-Trak

camera using Halcon HDevelop and display the resulting 3D object model.

Prerequisites

The following table lists the recommended Z-Trak firmware and software for this

camera model.

Z-Trak Firmware Design Software SDK

1.01 and greater MVTec HALCON
(17.12 or higher recommended)

 Sapera LT 8.40 or higher

(optional, for camera configuration via
CamExpert X program)

Software

MVTec HALCON (full version) machine vision software. Available from the MVTec

website:

https://www.mvtec.com/products/halcon/

Refer to MVTec documentation for more information.

The Z-Trak HALCON demo program is available for download from the Teledyne

DALSA website:

http://www.teledynedalsa.com/en/products/imaging/3d-cameras/

Sapera LT SDK (full version), the image acquisition and control software

development kit (SDK) for Teledyne DALSA cameras is available for download from

the Teledyne DALSA website:

http://teledynedalsa.com/imaging/support/downloads/sdks/

Sapera LT includes the CamExpert X application, which provides a graphical user

interface to access camera features for configuration and setup.

http://www.teledynedalsa.com/en/products/imaging/3d-cameras/z-trak-3d-laser-profiler/
https://www.mvtec.com/products/halcon/
http://www.teledynedalsa.com/en/products/imaging/3d-cameras/
http://teledynedalsa.com/imaging/support/downloads/sdks/

Doc #: 3D-L-AN0002-V1 June 4, 2019 Page 2

HALCON Demo Program Overview
The Z-Trak HALCON demo program demonstrates how to acquire a range image from

the Z-Trak camera and convert it to a 3D model ready for processing by Halcon 3D

point cloud functions. Invalid points are removed from the image to improve image

display.

Depending on the object being scanned, Z-Trak settings may need to be adjusted

from default values to obtain high quality profiles and reduce noise. The image height

should contain enough profiles to image the object. Accurate Y scale is dependent on

the speed of the object being scanned and the profile rate.

Refer to the Z-Trak user manual for information on how to optimize Z-Trak

parameters for profile acquisition.

The program performs the following operations:

1. Connects to the Z-Trak and reads features from the device related to image

information (Width, Height, PixelFormat, AcquisitionLineRate) and X and Z (A

and C) coordinate scaling factors (Scan3dCoordinateScale and

Scan3dCoordinateOffset)

2. Sets the minimum timeout for acquiring a full scan (to avoid a timeout).

3. Checks the pixel format and grabs a single image; the demo program supports

the Coord3D_C16 pixel format.

4. Removes invalid pixels from the acquired image using a threshold operation to

improve visualization.

5. Uses the scaling factors retrieved from the camera to create X, Y, and Z plane

images to generate a Halcon ObjectModel3D object for 3D visualization and

further processing.

Doc #: 3D-L-AN0002-V1 June 4, 2019 Page 3

Connecting to the Z-Trak
The demo program uses the first GigE Vision device found therefore only one Z-Trak

camera must be connected to the computer running the application. However, if

necessary, the source code can be modified to select the required device.

The Teledyne DALSA GigE Vision Device Status (installed with Sapera LT) can be used

to verify if the device is available:

Alternatively, the HALCON Image Acquisition Assistant, available from the HALCON

menu bar, can be used to detect devices on the GigEVision2 interface:

Doc #: 3D-L-AN0002-V1 June 4, 2019 Page 4

The required device can be selected from the Connection tab from the available

devices; click Connect to establish communication with the device.

The Z-Trak feature settings can be modified and are available in the Parameters tab.

The scan Height must be adjusted to acquire more than 1 profile; set this value to the

required number of profiles for a range image:

Doc #: 3D-L-AN0002-V1 June 4, 2019 Page 5

Running the Demo Program
To run the Z-Trak HALCON demo program, load the program and use the Execute >

Run menu command, click the run icon in the menu bar or use F5.

Upon execution the HALCON Iconic and Control variables are populated in the Variable

Window.

Doc #: 3D-L-AN0002-V1 June 4, 2019 Page 6

The acquired image is rendered as an ObjectModel3D object in the Graphics Window.

Use the mouse and keyboard combinations to rotate, zoom and move the 3D view.

Click Continue in the Graphics Window to end the program execution.

Doc #: 3D-L-AN0002-V1 June 4, 2019 Page 7

To execute the program again, first use the Execute > Reset Program Execution

menu command or press F2 before running the program.

Doc #: 3D-L-AN0002-V1 June 4, 2019 Page 8

HDevelop Source Code

* Image Acquisition 01: Code generated by Image Acquisition 01
info_framegrabber('GigEVision2', 'device', Information, ValueList)
Device : = ValueList[0]
open_framegrabber('GigEVision2', 0, 0, 0, 0, 0, 0, 'progressive', -1, 'default', -1, 'false',
'default', Device, 0, -1, AcqHandle)

* Get image information from device
get_framegrabber_param(AcqHandle, 'Width', Width)
get_framegrabber_param(AcqHandle, 'Height', Height)
get_framegrabber_param(AcqHandle, 'PixelFormat', PixelFormat)
get_framegrabber_param(AcqHandle, 'AcquisitionLineRate', ProfileRate)

* Get scaling factors from device
Microns2Meters : = 1e-6
set_framegrabber_param(AcqHandle, 'Scan3dCoordinateSelector', 'CoordinateA')
get_framegrabber_param(AcqHandle, 'Scan3dCoordinateScale', Xscale)
get_framegrabber_param(AcqHandle, 'Scan3dCoordinateOffset', Xoffset)
Xscale : = Xscale * Microns2Meters
Xoffset : = Xoffset * Microns2Meters
set_framegrabber_param(AcqHandle, 'Scan3dCoordinateSelector', 'CoordinateC')
get_framegrabber_param(AcqHandle, 'Scan3dCoordinateScale', Zscale)
get_framegrabber_param(AcqHandle, 'Scan3dCoordinateOffset', Zoffset)
Zscale : = Zscale * Microns2Meters
Zoffset : = Zoffset * Microns2Meters
* Y scale is assumed to be same as X scale: adjust according to your application setup
* Accurate Y scale is dependent on the speed of the object being scanned and the profile rate
Yscale : = Xscale
Yoffset : = 0

* Set minimum timeout for acquiring a full scan(computed in milliseconds with 20 % extra)
MinTimeout : = (Height / ProfileRate) * 1000 * 1.2
set_framegrabber_param(AcqHandle, 'grab_timeout', MinTimeout)

* Check pixel format
if (PixelFormat == 'Coord3D_C16')
* Grab one image from 3D scanner
 grab_image(Image, AcqHandle)
 * Get height map from image(in this case the image itself)
 HeightMap : = Image
else
* TODO: add other formats
endif

* Remove invalid pixels from height map by reducing grayscale domain
set_framegrabber_param(AcqHandle, 'Scan3dCoordinateSelector', 'CoordinateC')
get_framegrabber_param(AcqHandle, 'Scan3dInvalidDataValue', InvalidValue)
MaxValue : = lsh(1, 16) - 1
if (InvalidValue = 0)
 * Removing 0 from domain
 MinGray : = 1
 MaxGray : = MaxValue - 1
 elseif(InvalidValue = MaxValue)
 * Removing max value from domain
 MinGray : = 0
 MaxGray : = MaxValue - 2
else
 * Invalid value not supported.Skipping domain reduction
 MinGray : = 0
 MaxGray : = MaxValue - 1
endif
threshold(HeightMap, Region, MinGray, MaxGray)
reduce_domain(HeightMap, Region, ImageReduced)

* Create Z image with correct scaling in meters

Doc #: 3D-L-AN0002-V1 June 4, 2019 Page 9

convert_image_type(ImageReduced, Z, 'real')
scale_image(Z, Z, Zscale, Zoffset)

* Create X image with correct scaling in meters
gen_image_surface_first_order(X, 'real', 0, Xscale, Xoffset, 0, 0, Width, Height)
* Create Y image with correct scaling in meters
gen_image_surface_first_order(Y, 'real', Yscale, 0, Yoffset, 0, 0, Width, Height)
* Generate an ObjectModel3D
xyz_to_object_model_3d(X, Y, Z, ObjectModel3D)

dev_open_window(0, 0, 800, 600, 'black', WindowID1)
set_display_font(WindowID1, 16, 'mono', 'true', 'false')
get_object_model_3d_params(ObjectModel3D, 'num_points', NumPoints)
if (NumPoints > 0)
 VisPose : = []
 Instructions[0] : = 'Rotate: Left button'
 Instructions[1] : = 'Zoom: Shift + left button'
 Instructions[2] : = 'Move: Ctrl + left button'
 visualize_object_model_3d(WindowID1, ObjectModel3D, [], VisPose, ['color_attrib', 'lut'],
['coord_z', 'rainbow'], 'ObjectModel3D', [], Instructions, PoseOut)
else
 disp_message(WindowID1, 'No 3D points in the 3D object model!', 'window', 250, 200, 'black',
'true')
 stop()
endif

* Clear the ObjectModel3D
clear_object_model_3d(ObjectModel3D)

* Close device and exit program
close_framegrabber(AcqHandle)

