

User's Manual

AD-130GE

Digital 2CCD Progressive Scan Multi-Spectral Camera

> Document Version: 1.1 AD-130GE_Ver.1.1_Mar2012

Notice

The material contained in this manual consists of information that is proprietary to JAI Ltd., Japan and may only be used by the purchasers of the product. JAI Ltd., Japan makes no warranty for the use of its product and assumes no responsibility for any errors which may appear or for damages resulting from the use of the information contained herein. JAI Ltd., Japan reserves the right to make changes without notice.

Company and product names mentioned in this manual are trademarks or registered trademarks of their respective owners.

Warranty

For information about the warranty, please contact your factory representative.

Certifications

CE compliance

As defined by the Directive 2004/108/EC of the European Parliament and of the Council, EMC (Electromagnetic compatibility), JAI Ltd., Japan declares that AD-130GE complies with the following provisions applying to its standards.

EN 61000-6-3 (Generic emission standard part 1)

EN 61000-6-2 (Generic immunity standard part 1)

<u>FCC</u>

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Warning

Changes or modifications to this unit not expressly approved by the party responsible for FCC compliance could void the user's authority to operate the equipment.

Supplement

The following statement is related to the regulation on "Measures for the Administration of the control of Pollution by Electronic Information Products ", known as " China RoHS ". The table shows contained Hazardous Substances in this camera.

mark shows that the environment-friendly use period of contained Hazardous Substances is 15 years.

重要注意事项

有毒,有害物质或元素名称及含量表

根据中华人民共和国信息产业部『电子信息产品污染控制管理办法』,本产品《 有毒,有 害物质或元素名称及含量表 》如下.

	有毒有害物质或元素					
部件名称	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(VI))	多溴联苯 (PPB)	多溴二苯醚 (PBDE)
螺丝固定座	×	0	0	0	0	0
光学滤色镜	×	0	×	0	0	0
连 接插 头	×	0	0	0	0	0
电路板	×	0	0	0	0	0
○: 表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006规定的限量要求以下。 ×: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006规定的限量要求。 (企业可在此处、根据实际情况对上表中打"×"的技术原因进行进一步说明。)						

环保使用期限

电子信息产品中含有的有毒有害物质或元素在正常使用的条件下不会发生外 泄或突变、电子信息产品用户使用该电子信息产品不会对环境造成严重污染 或对基人身、财产造成严重损害的期限。 数字「15」为期限15年。

Table of Contents

JAI GigE [®] Vision Camera operation manuals	7
Introduction	7
Before using GigE Vision camera	7
Software installation	7
Camera Operation	8
1. General	8
2. Camera nomenclature	8
3. Main Features	9
4. Locations and functions	.10
4.1. Locations and functions	.10
4.2. Rear Panel Indicator	.11
5. Pin configuration & DIP switch	.12
5.1. 12-pin Multi-connector (DC-in/GPIO/Iris Video)	.12
5.2. Digital Output Connector for Gigabit Ethernet	.12
5.3. 6-pin Multi-connector (LVDS IN and TTL IN/OUT)	.12
5.4. DIP switches	.13
5.4.1 SW800 Trigger input 75 ohms termination	.13
5.4.2 SW100 TTL/Open collector output select	.13
5.4.3 SW700 Video output for Auto iris lens	.13
6. System Configuration	.14
6.1. System connection	.14
6.2. RJ-45 outputs	.14
6.3. Sync Mode	.15
6.4. Lens considerations	.15
7. Inputs and outputs interface	.16
7.1. Overview	.16
7.1.1 LUT (Cross Point Switch)	.16
7.1.2 12-bit Counter	.17
7.1.3 Pulse Generators (0 to 3)	.17
7.2. Opto-isolated Inputs/Outputs	.17
7.2.1 Recommended External Input circuit diagram for customer	.18
7.2.2 Recommended External Output circuit diagram for customer	.18
7.2.3 Optical Interface Specifications	.19
7.3. Input and output circuits	.19
7.3.1 Iris Video output	.19
7.3.1.1 Iris Video input and output	.20
7.3.1.2 Iris video output select	.20
7.3.2 Trigger input	.20
7.3.3 EEN (Exposure Enable) output	.21
7.4. GPIO Inputs and outputs table	.22
7.5. Configuring the GPIO module	.23
7.5.1 Input /Output Signal Selector	.23
7.5.2 Pulse generators (20 bit x 4)	.23
7.5.3 GPIO interface in GenlCam standard	.24
7.5.4 Change polarity	.24
7.5.5 The restrictions to use TTL In I/F in the AD-130GE	.25
7.5.6 Caution when the software trigger is used	.26
7.6. GPIO programming examples	.28
7.6.1 GPIO Plus PWC shutter	.28

	~ ~
7.6.2 Internal Trigger Generator	.29
8. Video Signal Output	.30
8.1. Sensor layout	.30
8.2. Partial scan (JAI Partial Scan ON)	.31
8.3. Digital Video Output (Bit Allocation)	.32
8.3.1 Bit Allocation (Pixel Format / Pixel Type) - (monochrome sensor)	.32
8.3.1.1 GVSP_PIX_MONO8 (8bit)	.32
8.3.1.2 GVSP_PIX_MONO10 (10bit)	.32
8.3.1.3 GVSP_PIX_MONO10_PACKED (10 bit)	.33
8.3.1.4 GVSP_PIX_MONO12 (12 bit)	.33
8.3.1.5 GVSP_PIX_MONO12_PACKED (12 bit)	.33
8.3.2 Bit Allocation (Pixel Format / Pixel Type) - (Bayer mosaic color sensor)	.33
8.3.2.1 GVSP_PIX_BAYRG8 "BayerRG8"	.33
8.3.2.2 GVSP_PIX_BAYRG10 "Bayer RG10"	.34
8.3.2.3 GVSP_PIX_BAYRG12 "Bayer RG12"	.34
8.3.2.4 GVSP_PIX_BAYRG10_Packed (Bayer10bit, Packed output)	.34
8.3.2.5 GVSP PIX BAYRG12 Packed (Bayer12bit, Packed output)	.34
8.3.2.4 GVSP PIX RGB8 PACKED "RGB 8Packed"	.34
8.3.2.5 GVSP_PIX_RGB10V1_PACKED "RGB 10V1_Packed"	.35
8.3.2.6 GVSP_PIX_RGB10V2_PACKED "RGB_10V2_Packed"	35
8 4 Video timing	36
8 4 1 Horizontal Timing	36
8 4 7 Vertical Timing	37
8 / 3 Partial Scan Vertical Timing	ירי. אצ
9 Network configuration	.J0
0.1 GigE Vicion Standard Interface	.+0 /0
9.1. Olge vision standard interface	.40
	.40
9.2.1 PC	.40
9.2.2 Cables	.40
9.2.3 Network card (NIC)	.40
9.2.4 HUD	.41
9.3. Recommended Network Configurations	.41
9.3.1 Guideline for network settings	.41
9.3.2 Video data rate (network bandwidth)	.42
9.3.3 Simplified calculation (Approximate value)	.43
9.3.4 Note for 100BASE-TX connection	.44
9.4. GigE camera connecting examples	.44
9.4.1 Using a switching hub for 1 port	.44
9.4.2 Connecting a camera to each port of a multi-port NIC	.45
9.4.3 The data transfer for multiple cameras	.45
9.4.3.1 If delayed readout is not used in continuous mode	.45
9.4.3.2 If delayed readout is not used in trigger mode	.46
9.4.3.3 If delayed readout is used	.46
10. Functions (Conforming to GenICam SFNC 1.3)	.47
10.1. Acquisition function	.47
10.1.1 Basic image acquisition flow	.47
10.1.2 Acquisition mode	.48
10.1.2.1 Single Frame	.48
10.1.2.2 Continuous mode	.49
10.2. Trigger Control	.50
10.2.1 TriggerSelector(TriggerMode)	.50

See the	possibil	ities
---------	----------	-------

10.2.1.1 Acquisition	50
10.2.1.2 Exposure	50
10.2.2 Triggersoftware	51
10.2.3 Triggersource	51
10.2.4 TriggerActivation	51
10.3. Exposure Control	52
10.3.1 Exposure Mode	52
10.3.2 ExposureTime	52
10.3.3 ExposureAuto	53
10.4. ActionControl	53
10.4.1 ActionDeviceKey	53
10.4.2 ActionSelector	53
10.4.3 ActionGroupMask	53
10.4.4 ActionGroupKey	53
10.5. Operation Mode	53
10.5.1 The exposure timing when the trigger pulse is input	54
10.5.1.1 Auto-detect LVAL-sync / async accumulation	54
10.5.1.2 Relation between the external trigger mode and LVAL Sync/Async	54
10.5.2 Continuous mode	55
10.5.3 Edge Pre-Select (EPS) trigger mode	55
10.5.4 Pulse Width Control (PWC) trigger mode	59
10.5.4.1 Timing chart	59
10.5.5 Smearless mode	61
10.5.5.1 Sync=Sync, LVAL Async, Smearless Enable=True, EPS trigger	61
10.5.5.2 Sync Mode=Sync, LVAL Async, Smearless Enable=True, PWC trigger	62
10.5.6 Reset Continuous Trigger (RCT) mode	63
10.5.7 Sequential Trigger Mode (EPS)	64
10.5.7.1 Setting parameters	64
10.5.7.2 Initial settings	66
10.5.8 Delayed Readout EPS and PWC Modes	60
10.5.9 Multi ROI mode (Multi Region of Interest)	6/
10.5.9.1 Setting parameters	6/
10.5.9.2 Initial parameters	68
10.5.10 Optical Black transfer mode	00
10.6. Operation mode and Functions matrix	09
10.6.1. SYNC Mode = STNC	09
10.0.2 STNC MODE = ASYIC	09
11.1 Duriel functions	70
11.1. Dasic Tulictions	70
11.1.2 Electronic chutter	/0
11.1.2 Electronic shutter	70
11.1.5 Shaung confection	···/ I
11.1.4 While Datalice	/2
11.1.6 Tost signal generator	/2
11.2 Control Tool Scroon	د /
11.2. Control Tool Screen	/3 27
11.2.1 Feature Properties (Guru)	د /
12 External Appearance and Dimensions	···/ 3 70
12. External Appearance and Dimensions	۶۱۰۰۱ مع
13.1 Specifications	00 08

81
83
83
83
83
84
84
84
85
86

JAI GigE[®] Vision Camera operation manuals

To understand and operate this JAI GigE[®] Vision camera properly, JAI provides the following manuals.

User's manual (this booklet) Describes functions and operation of the hardware JAI SDK & Control Tool User Guide Describes functions and operation of the Control Tool JAI SDK Getting Started Guide Describes the network interface

User's manual is available at <u>www.jai.com</u>

JAI SDK & Control Tool User Guide and JAI SDK Getting Started Guide are provided with the JAI SDK which is available at <u>www.jai.com</u>.

Introduction

GigE Vision is the new standard interface using Gigabit Ethernet for machine vision applications and it was mainly set up by AIA (Automated Imaging Association) members. GigE Vision is capable of transmitting large amounts of uncompressed image data through an inexpensive general purpose LAN cable for a long distance.

GigE Vision also supports the GenICam[™] standard which is mainly set up by the EMVA (European Machine Vision Association). The purpose of the GenICam standard is to provide a common program interface for various machine vision cameras. By using GenICam, cameras from different manufactures can seamlessly connect in one platform.

For details about the GigE Vision standard, please visit the AIA web site, <u>www.machinevisiononline.org</u> and for GenICam, the EMVA web site, <u>www.genicam.org</u>.

JAI GigE Vision cameras comply with both the GigE Vision standard and the GenICam standard.

Before using GigE Vision camera

All software products described in this manual pertain to the proper use of JAI GigE Vision cameras. Product names mentioned in this manual are used only for the explanation of operation. Registered trademarks or trademarks belong to their manufacturers. To use the JAI SDK, it is necessary to accept the "Software license agreement" first.

This manual describes necessary equipment and the details of camera functions.

Software installation

The JAI GigE Vision SDK & Control Tool can be downloaded from the JAI web site at <u>www.jai.com</u>. The JAI SDK is available for Windows XP and Vista, 32-bit and 64-bit. For the details of software installation, please refer to the "Getting Started Guide" supplied on the JAI SDK download page.

Camera Operation

1. General

This manual covers the digital 2-CCD progressive scan multi-spectral camera AD-130GE.

The AD-130GE is a GigE Vision compliant camera, belonging to the JAI C3 Advanced family. The AD-130GE employs 2 CCDs, one for Bayer color and the other for NIR monochrome utilizing prism optics so that the AD-130GE can inspect the objects by visible color sensor and Near IR sensor with the same angle of view.

The AD-130GE provides a frame rate of 31 frames/second at full resolution. Using partial scan, the camera can achieve faster frame rates up to 145 fps (8 lines height).

The 1/3" CCDs with square pixels offer a superb image quality. The high-speed shutter function and asynchronous random trigger mode allows the camera to capture high quality images of fast moving objects.

The camera features a built-in pre-processing function which includes blemish compensation, shading compensation, Bayer to RGB interpolation, LUT/gamma correction and knee control.

The AD-130GE also complies with the GenlCam standard and contains an internal XML file that is used to describe the functions/features of the camera. For further information about the GigE Vision Standard, please go to <u>www.machinevisiononline.org</u> and about GenlCam, please go to <u>www.genicam.org</u>.

As an application programming interface, JAI provides an SDK (Software Development Kit). This SDK includes GigE Vision Filter Driver, JAI Control tool, software documentation and code examples.

The JAI SDK can be downloaded from <u>www.jai.com</u>.

The latest version of this manual can be downloaded from <u>www.jai.com</u>

For camera revision history, please contact your local JAI distributor.

2. Camera nomenclature

The standard camera composition consists of the camera main body and C-mount protection cap.

The camera is available in the following versions:

AD-130GE

Where <u>A</u> stands for "Advanced" family, <u>D</u> stands for "Dual CCD", <u>130</u> represents the resolution "1.3 million pixels", <u>130</u> indicates that this is the first dual-CCD model with this resolution, and <u>GE</u> stands for "GigE Vision" interface.

3. Main Features

- C3 Advanced series progressive scan camera
- GigE Vision, GenlCam compliant
- Multi-spectral 2-channel CCD camera
- Simultaneously captures Visible and Near-IR through the same optical path
- 1/3" progressive scan IT CCDs with 1296 (h) x 966 (v) active pixels
- 3.75 µm square pixels
- RGB 24-bit or 32-bit or Raw Bayer 12- or 10- or 8-bit output for visible
- 12- or 10- or 8-bit output for Near-IR
- 30 frames/second with full resolution
- Variable partial scan is available with user-definable height and starting line
- Programmable exposure from 0.4L(11.49µs) to 982L(31.761ms)
- Edge Pre-select, Pulse Width Control and Reset Continuous trigger modes
- Sequence trigger mode for on-the -fly change of gain, exposure and ROI
- Delayed read out mode for smooth transmission of multi camera applications
- Blemish compensation built in
- Shading compensation circuit built in
- LUT (Look Up Table) for gamma correction
- AGC (Automatic Gain Control) from 0dB to 21dB
- LVAL synchronous/asynchronous operation (auto-detect)
- Auto-iris lens video output for lens control
- Programmable GPIO with opto-isolated inputs and outputs
- Comprehensive software tools and SDK for Windows XP/Vista/7 (32 bit "x86" and 64 bit "x64" JAI SDK Ver. 1.2.1 and after)

4. Locations and functions

4.1. Locations and functions

10

Mounting holes

1	CCD sensor	: 1/3 inch CCD sensor
2	Lens Mount	: C-mount (Note*1)
3	12P Multi Connector	: DC+12V and Trigger Input
4	LED	: Power and Trigger indications
5	6P Multi Connector	: LVDS IN and TTL IN and OUT
6	RJ-45 Connector(GigE 1)	: GigE Vision I/F w/ thumbscrews for color
\bigcirc	RJ-45 Connector(GigE2)	: GigE Vision I/F w/ thumbscrews for NIR
8	Holes for RJ-45 thumbscrews	: Vertical type (Note*2)
9	Holes for RJ-45 thumbscrews	: Vertical type (Note *2)

*1) : AD-130GE is based on a Dichroic Prism. For optimal performance, lenses designed for 3CCD cameras should be used with this camera. Be sure to avoid lenses that contain IR filters as this will impair the operation of the NIR sensor. Rear protrusion of the C-mount lens must be less than 4mm to avoid damage to the prism.

: M3, max length 5mm (Note*3)

- *2) : When an RJ-45 cable with thumbscrews is connected to the camera, please do not excessively tighten screws by using a screw driver. The RJ-45 receptacle on the camera might be damaged. For security, the strength to tighten screws is less than 0.147 Newton meter (Nm). Tightening by hand is sufficient in order to achieve this.
- *3) : The tripod adapter plate MP-41 can be used with AD-130GE

Fig.1 Locations

4.2. Rear Panel Indicator

The rear panel mounted LED provides the following information:

 Amber Steady green Flashing green 	: Power connected - initiating : Camera is operating in Continuous mode : The camera is receiving external trigger
 Steady green Flashing green Amber 	: Connecting 1000Base-T:Link : Connecting 100Base-T/10Base-T:Link : GigE Network:Act

panel Note: In 10BASE-T connection, no signal is output.

Fig.2 Rear

5. Pin configuration & DIP switch

5.1. 12-pin Multi-connector (DC-in/GPIO/Iris Video) Type: HR10A-10R-12PB (Hirose) male.

(Seen from the rear of camera)

Pin no.	Signal	Remarks
1	GND	
2	+12 V DC input	
3	Opt IN 2 (-) / GND (*1)	
4	Opt IN 2 (+)/Iris Video out (*1)	
5	Opt IN 1 (-)	
6	Opt IN 1 (+)	
7	Opt Out 1 (-)	
8	Opt Out 1 (+)	
9	Opt Out 2 (-)	
10	Opt Out 2 (+)	
11	+ 12 V DC input	
12	GND	

Fig. 3. 12-pin connector.

*1: Iris Video output function can be set by the internal DIP switch (SW700).

5.2. Digital Output Connector for Gigabit Ethernet

Type: RJ-45 : HFJ11-1G02E-L21RL or equivalent

The digital output signals follow the Gigabit Ethernet interface using an RJ-45 conforming connector. To the right is a table with the pin assignment for Gigabit Ethernet connector.

Pin No	In/Out	Name
1	In/Out	MX1+ (DA+)
2	In/Out	MX1- (DA-)
3	In/Out	MX2+ (DB+)
4	In/Out	MX3+ (DC+)
5	In/Out	MX3- (DC-)
6	In/Out	MX2- (DB-)
7	In/Out	MX4+ (DD+)
8	In/Out	MX4- (DD-)

Fig. 4. Gigabit Ethernet connector

5.3. 6-pin Multi-connector (LVDS IN and TTL IN/OUT)

Type: HR-10A-7R-6PB

Fig.5 HIROSE 6-pin connector

No	I/0	Name	Note
1	Ι	LVDS In 1-	
2	Ι	LVDS In 1+	
3	Ι	TTL IN 1	75ohm Terminator (Note*1)
4	0	TTL Out 1	Note*2)
5	Ι	TTL IN 2	75ohm Terminator(Note*1)
6 注	E	GND	

*1:can be changed by DIP switches.

*2: Open collector or TTL level can be selected by an internal DIP switch. Factory default is TTL.

5.4. DIP switches

5.4.1 SW800 Trigger input 75 ohms termination

Trigger input can be terminated with 75 ohms if DIP switch SW600 is selected as described below. Factory default is open.

TTL 75 Ω

TTL IN 1
 TTL IN 2

Note: Toward upper side of camera body

5.4.2 SW100 TTL/Open collector output select

EEN output through HIROSE 6-pin #4 can be selected TTL level or open collector level. The selection is activated by DIP switch SW100 described below.

TTL OPEN

Note: Toward upper side of camera body

5.4.3 SW700 Video output for Auto iris lens

The output through HIROSE 12-pin #4 can be selected OPT IN 2 or Iris video output by DIP switch SW700 described below. Factory default is OPT IN 2.

OPT IN IRIS

Note: Toward inner side of camera body

6. System Configuration

6.1. System connection

When the AD-130GE is connected to a PC, there are two connection methods.

Method one is to use dual or quad input Network Interface Card (NIC) or two separate network interface cards. The other way is to use a hub as shown below.

Fig.6 System configuration

It should be noted that the hub being used should comply with Gigabit Ethernet.

When JAI SDK control tool is started, AD-130GE is recognized as two cameras. #0 represents the Bayer color imager and #1 represents the NIR imager.

Each imager can be handled as an independent camera.

Two image sensors can be operated either in SYNC mode or ASYNC mode. This can be set by the "Sync mode command".

6.2. RJ-45 outputs

The AD-130GE has two RJ-45 connectors, one for color sensor output and the other for the monochrome NIR sensor. The output for the color sensor is through GigE-1 and monochrome NIR output is through GigE-2. These two outputs can be set at synchronous (SYNC) or asynchronous (ASYNC) in Sync Mode feature.

Fig.7 RJ-45 output system

6.3. Sync Mode

AD-130GE has two sensors inside and these two sensors can be synchronized or operated independently. This mode selection is activated by "Sync mode feature".

Factory default setting is "Async".

Sync mode	Video out (Pixel format)	Trigger in	Read out (Partial, Smearless)	Functions (Shutter,others)
Sync	Sensor 1 and 2	Trigger to sensor 1 operates sensor 2.	Settings to sensor 1 applies to sensor 2.	Sensor 1 and 2
Async	can be set independently	Input trigger to Sensor 1 and 2 independently	Sensor 1 and 2 can be set independently	independently

Functions	SY	NC	ASYNC		
TUNCTIONS	RJ-45(GigE 1)	RJ-45(GigE 1) RJ-45(GigE 2)		RJ-45(GigE 2)	
Sensor	Bayer(sensor1)	NIR(sensor2)	Bayer(sensor1)	NIR(sensor2)	
Trigger input	0	← Triggered by GigE1	0	0	
Output	Bayer RGB	Monochrome	Bayer RGB	Monochrome	
Shutter	0	0	0	0	
Partial scan	0	← Follow the setting of GigE 1	0	0	
Smearless	0	← Follow the setting of GigE 1	0	0	

In Sync mode, the trigger to Bayer also triggers to NIR.

6.4. Lens considerations

The AD-130GE is based on a dichroic prism, allowing precise separation of the visible (color) and near-infrared parts of the spectrum.

and near-infrared parts of the spectrum. Thanks to the compact design of the prism, C-mount lenses can be used with this camera. For optimal performance it is strongly advised to use lenses designed for 3CCD cameras with the AD-130GE. These lenses have minimal chromatic aberration, thus allowing both the visible and near-IR images to be in focus. Be sure to select a lens that does not have any built-in IR filtering as this will disrupt the proper operation of the near-IR image channel.

Fig 8 Focal points for Visible and NIR lights

7. Inputs and outputs interface

7.1. Overview

All input and output signals pass through the GPIO (General Purpose Input and Output) module. The GPIO module consists of a Look-Up Table (LUT - Cross-Point Switch), 2 Pulse Generators and a 12-bit counter. In the LUT, the relationship between inputs, counters and outputs is governed by internal register set-up.

Fig. 9 Cross point switch

7.1.1 LUT (Cross Point Switch)

The LUT works as a cross-point switch which allows connecting inputs and outputs freely. The signals LVAL_IN, DVAL_IN, FVAL_IN and EEN_IN all originate from the camera timing circuit. On this diagram, Trigger 0 is used for exposure and Trigger 1 is used for Delayed Readout. The Time Stamp Reset signal can reset the time stamp specified in GigE Vision Format. This signal can be used when time stamps from several cameras connected are coincident with each other.

The "Sequence reset" resets the sequential settings. Outputs from the LUT described on the right side show GPIO settings for LINE SELECTOR in the JAI Camera Control tool and inputs to the LUT on the left side show GPIO settings for LINE SOURCE in the JAI Camera Control tool.

7.1.2 12-bit Counter

A camera pixel clock can be used as a source. The counter has a "Divide by N", where N has the range 1 through 4096, allowing a wide range of clock frequencies to be programmed. Setting value 0 is bypass, setting value 1 is 1/2 dividing, and setting value 4095 is 1/4096 dividing. As the pixel clocks for the AD-130GE are 51.324 MHz, the output frequency is varied from 51.324 MHz to 12.53 KHz.

7.1.3 Pulse Generators (0 to 3)

Each pulse generator consists of a 20-bit counter. The behavior of these signals is defined by their pulse width, start point and end point.

The pulse generator signals can be set in either triggered or periodic mode.

In triggered mode, the pulse is triggered by the rising edge/falling edge/high level or low level of the input signal. In periodic mode, the trigger continuously generates a signal that is based on the configured pulse width, starting point and end point.

7.2. Opto-isolated Inputs/Outputs

The control interface of the C3 GigE Vision camera series has opto-isolated inputs and outputs, providing galvanic separation between the camera's inputs/outputs and peripheral equipment. In addition to galvanic separation, the opto-isolated inputs and outputs can cope with a wide range of voltages; the voltage range for inputs is +3.3V to +24V DC whereas outputs will handle +5V to +24V DC.

Fig.10 Photo coupler

7.2.1 Recommended External Input circuit diagram for customer

Fig.11 External Input Circuit, OPT IN 1 and 2

Fig.12 External Output Circuit, OPT OUT 1 and 2

7.2.3 Optical Interface Specifications

The relation of the input signal and the output signal through the optical interface is as follows.

Conditions for Input				
Input Line Voltage Range	+3.3V ~ +24V			
Input Current	6mA ~ 30mA			
Minimum Input Pulse Width to Turn ON	0.5µs			

Output Specifications					
Output Load(Maximum Current)	100mA				
Minimum Output Pulse Width	20µs				
Time Delay Rise TDR	0.5µs ~ 0.7µs				
Rise Time RT	1.2µs ~ 3.0µs				
Time Delay Fall TDF	1.5µs ~ 3.0µs				
Fall Time FT	4.0µs ~ 7.0µs				

Fig.13 Optical Interface Performance

7.3. Input and output circuits

In the following schematic diagrams the input and output circuits for video and timing signals are shown.

7.3.1 Iris Video output

This signal can be used for lens iris control in Continuous mode. The signal is taken from the CCD sensor output through the process circuit but as the reverse compensation is applied, the signal is not influenced by the gain settings. The video output is without sync. The signal is 0.7 V p-p from 75 Ω without termination. This signal is taken from sensor 1 but it can be changed by the register. In order to get this signal, DIP switch DSW700 should be changed. Refer to 5.4.3.

Fig.14 Iris video output

7.3.1.1 Iris Video input and output

The lens-iris video output level at pin 4 of the 12-pin Hirose connector is 700 mV for 100% video output level. iris video signal is taken after the gain circuit. However, negative compensation is applied to the iris circuit, thus gain setting has no influence for controlling auto iris lenses. It is without sync.

Fig.15 Iris Video output

7.3.1.2 Iris video output select

As the factory default setting, the signal from AD-130GE #0(color) is used for iris control. The setting can be changed in the following screen. This screen is effective if AD-130GE#0 is selected.

🗆 e) Analog Control		
🗄 Gain Selector	Analog All	
Gain Auto	Off	
AGC Reference	0	
Auto Gain Value	0	
Black Level Selector	All	
Balance White Auto	Off	
JAI Balance White Auto Once	Push to Execute Command>	=
Status of video processing	Completed successfully	
🛨 AWB Area Selector	Block0	
AWB Area Enable All	65535	
Iris Signal Output Mode	CCD1 🛛 💌	
ASC Min.	CCD1	143
ASC Max.	CCD2	
ACO 23	0	

7.3.2 Trigger input

An external trigger input can be applied to pin 3 and 5 of 6-pin Hirose connector. The input is AC coupled. To allow long pulses the input circuit is designed as a flip-flop circuit. The leading and trailing edges of the trigger pulse activate the circuit. The trigger polarity can be changed. Trigger input level 4 V \pm 2 V.

Fig.16 Trigger circuit

AD-130GE

See the possibilities

7.3.3 EEN (Exposure Enable) output

XEEN is available on pin 4 of the 6-pin Hirose connector.

The output can be selected as either open collector or TTL level.

The TTL output circuit is 75Ω complementary emitter followers. It will deliver a full 5 volt signal.

Output level \geq 4 V from 75 Ω . (No termination). For the open collector, the maximum current is 120mA. But if current of more than 50mA is used, use thicker cable. The use of thinner cable may cause a malfunction due to its resistance.

7.4. GPIO Inputs and outputs table

Selector			Trigger Selector			Line Selector				Pulse Generator Selector					
Switch Output)		Camera O			Camera 1		ut 1	ut 2	iet	Camera 0	Camera 1	0.	.	2.	.3
Source Signa (Cross Point	al Switch Input)	Frame Start	Transfer Start	Frame Start	Transfer Start	Line 1 TTL Out 1	Line 3 Optical O	Line4 - Optical O	Time Stamp Res	Sequence Table Reset	Sequence Table Reset	Pulse Generato	Pulse Generato	Pulse Generato	Pulse Generato
Not Connect	ed / Off	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Line5 - Optic	al In 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Line6 - Optic	al In 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Line7 - TTL I	n 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Line9 - TTL I	n 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Line8 - LVDS	S In	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulse Gener	ator 0	0	0	0	0	0	0	0	0	0	0	×	0	0	0
Pulse Gener	ator 1	0	0	0	0	0	0	0	0	0	0	0	×	0	0
Pulse Gener	ator 2	0	0	0	0	0	0	0	0	0	0	0	0	×	0
Pulse Gener	ator 3	0	0	0	0	0	0	0	0	0	0	0	0	0	×
Camera 0	Software Trigger 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camera 1	Software Trigger 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camera 0	Software Trigger 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camera 1	Software Trigger 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camera 0	Software Trigger 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camera 1	Software Trigger 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camera 0	Software Trigger 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camera 0	Software	0	0	0	0	0 ~	0 ~	0 ~	0 ×	0 ×	0 ×	0 ×	0 ×	0 ×	~
Camera 1	Software	0	0	0	0	×	×	×	×	×	×	×	×	×	×
Camera 0	Action 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camera 1	Action 1	0	0	0	0	0	0	0	0	0	0	0	0	0	
Camera 0	Action 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camera 1	Action 2	0	0	0	0	0	0	0	0	0	0	0	0	0	
FVAL1 (Inter	face#0)	×	×	×	×	0	×	×	×	×	×	0	0	0	0
LVAL1 (Inter	face#0)	×	×	×	×	0	×	×	×	×	×	0	0	0	0
DVAL1 (Interface#0)		×	×	×	×	0	×	×	×	×	×	0	0	0	0
Exposure Active1 (Interface#0)		×	×	×	×	0	0	0	×	×	×	0	0	0	0
FVAL2 (Interface#1) LVAL2 (Interface#1)		×	×	×	×	0	×	×	×	×	×	0	0	0	0
		×	×	×	×	0	×	×	×	×	×	0	0	0	0
DVAL2 (Inter	DVAL2 (Interface#1)		×	×	×	0	×	×	×	×	×	0	0	0	0
Exposure Ac	tive2 (Interface#1)	×	×	×	×	0	0	0	×	×	×	0	0	0	0
		Trig Sou	iger irce			Line Source	e					Puls Gen Clea	e erator r ce		

7.5. Configuring the GPIO module

7.5.1 Input /Output Signal Selector

GPIO is used to determine which signal is assigned which terminal. For the details, please refer to Register Map, Digital I/O, Acquisition and Trigger Control and Pulse Generator.

Line Selector	
🗆 g) Digital IO Control	
	Line1 - TTL Out 1
Line Status All	Line1 - TTL Out 1
 User Output Selector 	Line3 - Optical Out 1
User Output Value All	Line4 - Optical Out 2 Time Stamp Reset
Software Trigger 0	Sequence Table Reset
Software Trigger 1	0
	0

L	ii.	ne Source	
	Ξ	g) Digital IO Control	
	Ξ	Line Selector	Line1 - TTL Out 1
		Line Source	Off 🔤
		Line Inverter	Off
		Line Status	FVAL1 (Interface#0)
		Line Mode	FVAL2(Interface#1) \/Al1(Interface#0)
		Line Format	LVAL2 (Interface#1)
		Line Status All	DVAL1 (Interface#0)
	Ŧ	User Output Selector	DVAL2 (Interface#1)
		User Output Value All	Exposure Active? (Interface#0)
		Software Trigger 0	Line5 - Optical In 1
		Software Trigger 1	Line6 - Optical In 2
		Software Trigger 2	Line/- Lin] Line/- L/DSTa
		Software Trigger 3	ILine9 - TTL In 2
	Ξ	h) Pulse Generators	Pulse Generator 0
		Clock Pre-scaler	Pulse Generator 1
		Pulse Generator Clock (MHz)	Pulse Generator 2
	Ð	Pulse Generator Selector	ISoftware Trigger 0
	Ξ	i) Sequence Control	Software Trigger 1
		Sequence Mode	Software Trigger 2
	Li Se m	ne Source elects which internal acquisition or I/O source signal t ust be Output.	Software Trigger 3 Action 1 Action 2

7.5.2 Pulse generators (20 bit x 4)

There are 4 pulse generators (designated 0 through 1) that can be used to create various timing scenarios by programming start point, endpoint, length and repeats.

Fig.18 Pulse waveform

Example of the setting

The following drawing is an example of settings.

FVAL is used for the input of a pulse generator 0 and the clock, after the rising edge of FVAL, counts 100 clocks for the high period of the pulse and 102 clocks for the pulse length. As 2400 is for Clock Pre-scaler, the output of the 12 bit counter is 25 KHz, which is 40µs.

Thus, pulse generator 0 creates a 4 ms pulse.

The following shows JAI SDK Camera Control Tool for setting Pulse Generators.

Clock Pre-scaler	1	
Pulse Generator Clock (MHz)	33.75	
Pulse Generator Selector	Pulse Generator 0	*
Pulse Generator Length	1	
Pulse Generator Length (ms)	2,963E-05	
Pulse Generator Frequency (Hz)	3.375E+07	
Pulse Generator Start Point	0	
Pulse Generator Start Point (ms)	0	
Pulse Generator End Point	1	
Pulse Generator End Point (ms)	2,963E-05	
Pulse Generator pulse-width (ms)	2.963E-05	
Pulse Generator Repeat Count	0	
Pulse Generator Clear Activation	Free Run	
Pulse Generator Clear Source	Off	
Pulse Generator Inverter(Polarity)	False	

7.5.3 GPIO interface in GenlCam standard

Outputs from Cross Point Switch are displayed in 3 sectors in GenlCam standard. Inputs to Cross Point Switch are displayed as Source in each sector.

- (1) [Acquisition Control] [Trigger Selector] [Trigger Source]
 : Select the trigger source for Frame Start and Transfer Start Trigger
- (2) [Digital IO Control] [Line Selector] [Line Source] : Select signal inputs and outputs for camera I/F
- (3) [Pulse Generators] [Pulse Generator Selector] [Pulse Generator Clear Source] : Select the signal source for CLEAR input to Pulse Generator

7.5.4 Change polarity

The polarity of AD-130GE is positive as the default setting. This can be changed in each sector as follows.

(1) [Acquisition Control] - [Trigger Selector] - [Trigger Activation] and [Trigger Source Inverter]

In the AD-130GE, [Trigger Activation] and [Trigger Source Inverter] are changed simultaneously.

[Trigger Activation] = "Rising Edge" & [Trigger Source Inverter] = "False" settings are default.

The default setting can be changed to [Trigger Activation] ="Falling Edge"& [Trigger Source Inverter] = "True".

If "Rising Edge" is set, the rising edge is effective input. If "Falling Edge" is set, the falling edge is effective.

(2) [Digital IO Control] - [Line Selector] - [Line Inverter]

"False" is default setting. This can be changed to "True". If "False" is set, the signal selected in Line Source (Line Mode=Output) is directly connected to Line Selector. If "True" is set, the signal selected in Line Source (Line Mode=Output) is connected to Line Selector after its polarity is reversed.

(3) [Pulse Generators] - [Pulse Generator Selector] - [Pulse Generator Inverter(Polarity)]

"False" is deafault and can be changed to "True". If "False" is set, the signal selected in Pulse Generator Clear Source is directly connected to Pulse Generator Selector. If "True" is set, the signal selected in Pulse Generator Clear Source is connected to Pulse Generator Selector after its polarity is reversed.

7.5.5 The restrictions to use TTL In I/F in the AD-130GE

If the polarity of TTL I/F in the AD-130GE is changed, the initialization is executed in the camera.

If the source for the same selector item of Camera 0 and Camera 1 is assigned TTL In1 and TTL In2 respectively, the initialization is executed without any problem.

However, if the source for the same selector item of Camera 0 and Camera 1 is assigned the same TTL In and the polarity is changed, there is some restriction as the initialization is executed using the Camera 0 polarity setting as the reference.

It is recommended to use a different sources for Camera 0 and Camera1.

7.5.6 Caution when the software trigger is used

The AD-130GE has the following restriction when using the software trigger.

1) The input port of GPIO, Camera 0 and Camera 1 have software trigger 0 to 3, respectively. However, the output port of GPIO has only one software trigger 0 to 3.

Therefore, the function is described in the figure 21.

It is recommended to use a different software trigger for Camera 0 and Camera 1.

If Software trigger 0 is selected as the trigger source for Frame Start Trigger of Camera 0 and Camera 1, the command for Camera 0 and command for Camera 1 are mixed. Therefore, Software trigger 0 command for Camera 0 and Camera 1 are applied to both Camera 0 and Camera 1, and the function does not operate properly.

Fig. 20 Software Trigger setting restriction

2) Action Command

In the action command of AD-130GE, Software 2 and 3 are used as action commands and sent to the selected source.

If the source is set to Action 1, for instance, it is changed to Software trigger 2 in the camera control tool.

Action 1 => Use Software Trigger 2 Action 2 => Use Software Trigger 3

3) "Trigger Source = Software" in Frame Start and Transfer Start For Frame Start and Transfer Start in the AD-130GE, "Trigger Source = Software" can be set and Software command 0 and software command 1 can be sent. Frame Start / Trigger Software command => Use Software Trigger 0

Transfer Start / Trigger Software command => Use Software Trigger 1

7.6. GPIO programming examples

7.6.1 GPIO Plus PWC shutter

Example: 10µs unit pulse width exposure control (PWC). Pixel clock is 51.324MHz. 513 clocks (613-100) equal 10µs.

7.6.2 Internal Trigger Generator

Example: Create a trigger signal and trigger the camera.

Feature			Value
c)Acquisition and Trigger		Trigger Mode	ON
Trigger controls	selector		
Pulse Generators	Pulse	Pulse Generator 0 Selector	
	Generator		
	selector		
		Clock Choice	1 = Pixel Clock (50MHz)
		Counter Dividing Value	2499 (51324000/2500)
		Length Counter 0	1000 Clocks
		Start point Counter 0	100 Clocks
		Repeat Count 0	0
		End point Counter 0	293 Clocks
		Clear activation	Off
		Trigger source	pulse generator 0

Fig.22 Pulse Generator 0 timing Example 2

- 8. Video Signal Output
- 8.1. Sensor layout

In the GigE Vision Format, only Active Pixel Area is output and the area of dummy and reserved is not output. If the OB transfer mode is set ON, OB parts of 8 pixels on the top and 16 pixels on the right are output.

Note for output image:

The output area depends on the settings of Pixel Format as well as OB transfer Enable. The available display image is indicated by "Width Max" and "Height Max" in the control tool. The following table shows relations mentioned on the above.

3					
	OB Transfer E	nable ="False"	OB Transfer Enable ="True"		
	Width Max Height Max		Width Max	Height Max	
BayRG8,BayRG10,BayRG12, BayRG10_Packed,BayRG12_Packed, Mono8, Mono10, Mono12, Mono10_Packed,Mono12_Packed	1296	966	1312	970(Note1)	
RGB8_Packed, BGR10V1_Packed, BGR10V2_Packed	1292(Note2)	962(Note2)	-	-	
Note1: This is if JAI Partial Scan is set to "False". This will be 966, if JAI Partial Scan is set to "True"					

Note2: In case of RGB output, 2 pixels each on both sides are not read out.

Fig.23. Sensor layout and Video output image

Height 2

Height 4

Height 5

ROI 5

8.2. Partial scan (JAI Partial Scan ON)

Partial scan allows higher frame rates by reading out a smaller center portion of the image, reducing vertical resolution. This is particularly useful when inspecting objects that do not fill the whole height of the image. In order to activate this function, Fast Dump register should be ON.

Full scan Partial Scan Fig.24 Conceptual drawing for partial scan

The partial scan mode for AD-130GE is variable. The first line and the last line to be read out can be set. For Bayer color, the start line should set on an odd line and the last line is set so that the height is an even number. It should be noted that if an even start line is set, the pixel format is automatically changed to GB pixel format.

The variable scan readout is connected with the ROI settings.

- 1. If ROI is set, these settings are applied to the partial scan settings.
- 2. If the multi ROI is used, the smallest number of the line and the largest number of the line define the partial scan area.
- 3. In the case of sequence trigger, it is the same as for multi ROI. The smallest line and the largest line define the partial scan.

In order to execute the partial scan, the JAI Partial Scan should be ON.

Fig.25 Partial scan

8.3. Digital Video Output (Bit Allocation)

800mV

Although the AD-130GE is a digital camera, the image is generated by an analog component, the CCD sensor.

The table and diagram below show the relationship between the analog CCD output level and the digital output.

Color

IR

230mV ↑

CCD out	Analog Signal *	Bayer10bit	RGB24bit、Bayer8bit
Black	0mV	33.5LSB	8LSB
150mV	700mV	890LSB	222LSB
173mV ↑	800mV	1023LSB	255LSB
CCD out	Analog Signal *	IR 10bit	IR 8bit
Black	0mV	33.5LSB	8LSB
200mV	700mV	890LSB	222LSB

1023LSB

255LSB

The standard setting for 10-bit video level is 890 LSB. A 200 mV CCD output level equals 100% video output.

8.3.1 Bit Allocation (Pixel Format / Pixel Type) - (monochrome sensor)

In the GigE Vision Interface, GVSP (GigE Vision Streaming Protocol) is used for an application layer protocol relying on the UDP transport layer protocol. It allows an application to receive image data, image information and other information from a device.

As for the monochrome sensor in the AD-130GE, the following pixel types supported by GVSP are available.

With regard to the details of GVSP, please refer to the GigE Vision Specification available from the AIA (<u>www.machinevisiononline.org</u>).

8.3.1.1	GVSP_	_PIX_	MON08	(8bit)
---------	-------	-------	-------	--------

1 By	/te						2 E	Byte	?					3	Byt	e							
Y0											Y	′1							Ý	′2			
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7

8.3.1.2 GVSP_PIX_MONO10 (10bit)

1 Byte						2 B	yte						3 E	Byte)					4	By	rte							
		Y0							Y	0							Y	'1							Y	1			
0 1 2	2 3	4	5	6	7	8	9	Х	Х	Χ	Х	Х	Х	0	1	2	3	4	5	6	7	8	9	Х	Х	Х	Х	Х	Х

8.3.1.3 GVSP_PIX_MONO10_PACKED (10 bit)

1	B	yt	e					2	2 B	3y1	te																	3	BB	syt	e									2	1	By	te	5										
						,	Y0						Τ							Y1													Y	2													Y	3						
	2	3	4	5	6	7	8	9	0	1	χ	Х	. ()	1	χ	χ	2	3	3	4	5	6	7	8	ç) ;	2	3	4	5	6	7	8	9	0	1	χ	Х	0)	1	χ	χ	2	2	3	4	5	6	7	8	ć	}

8.3.1.4 GVSP_PIX_MONO12 (12 bit)

1 E	syte	è						2 By	yte						3	B By	te							4 By	/te						
			Ý	ν Ό							Y	0							Y	1							Y	1			
0	1	2	3	4	5	6	7	8	9	10	11	Х	Х	Х	Х	0	1	2	3	4	5	6	7	8	9	10	11	Х	Х	Х	Х

8.3.1.5 GVSP_PIX_MONO12_PACKED (12 bit)

1 E	Зy	te	e													2	B	yt	e												3	By	/t	e												4	Ву	/te	e										
						١	/0															,	Y1															Y2)													١	/3						
4	ļ	5	6	7	8	9	1()	11	0)	1	2	3	3	0	1		2	3	4	5	6	3	7	8	9	1	0	11	4	5		6	7	8	9) ·	10	11	0	1	1	2	3	0	1	2)	3	4	5	6	1	8	3	9	10	11

Connector	Value
	Mono8 Mono10
RJ-45_2	Mono10 Mono10 Packed
	Mono12
	Mono 12 Packed

8.3.2 Bit Allocation (Pixel Format / Pixel Type) - (Bayer mosaic color sensor)

In the GigE Vision Interface, GVSP (GigE Vision Streaming Protocol) is used for an application layer protocol relying on the UDP transport layer protocol. It allows an application to receive image data, image information and other information from a device.

As for the Bayer mosaic color sensor in the AD-130GE, the following pixel types supported by GVSP are available.

With regard to the details of GVSP, please refer to the GigE Vision Specification available from the AIA.

8.3.2.1 GVSP_PIX_BAYRG8 "BayerRG8"

1 L1	ne																					
/te							2 B	yte							3 By	/te						
		R	0							G	i1 -							R	2			
1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
n L	ine																					
/te							2 B	yte							3 E	Syte	,					
		G	i0							B	1							G	i2			
1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
	1 Li /te 1 n L /te	1 2 n Line /te 1 2	r Line /te 1 2 3 n Line /te 6 1 2 3	I Line /te R0 1 2 3 4 n Line /te G0 1 2 3 4	I Line /te R0 1 2 3 4 5 n Line /te G0 1 2 3 4 5	R0 1 2 3 4 5 6 n Line /te G0 1 2 3 4 5 6	I Line R0 1 2 3 4 5 6 7 n Line	I Line 2 B R0 1 1 2 3 4 5 6 7 0 n Line /te 2 B /te 2 C 0 G0 1 2 3 4 5 6 7 0	I Line 2 Byte R0 1 1 2 3 4 5 6 7 0 1 n Line /te 2 Byte /te 2 Byte G0 1 1 2 3 4 5 6 7 0 1	I Line 2 Byte R0 1 1 2 3 4 5 6 7 0 1 2 n Line /te 2 Byte 2 Byte G0 1 2 3 4 5 6 7 0 1 2 1 2 3 4 5 6 7 0 1 2	I Line 2 Byte R0 G 1 2 3 4 5 6 7 0 1 2 3 n Line /te 2 Byte /te 2 Byte G0 B 1 2 3 4 5 6 7 0 1 2 3 1 2 3 4 5 6 7 0 1 2 3	I Line 2 Byte R0 G1 1 2 3 4 5 6 7 0 1 2 3 4 n Line /te 2 Byte 2 Byte 3 4 5 6 7 0 1 2 3 4 1 2 3 4 5 6 7 0 1 2 3 4 1 2 3 4 5 6 7 0 1 2 3 4	I Line 2 Byte R0 G1 1 2 3 4 5 6 7 0 1 2 3 4 5 n Line /te 2 Byte 2 Byte 1 2 3 4 5 ft G0 B1 1 2 3 4 5 1 2 3 4 5 6 7 0 1 2 3 4 5	I Line 2 Byte R0 G1 1 2 3 4 5 6 7 0 1 2 3 4 5 6 n Line /te 2 Byte 2 Byte 5 6 7 0 1 2 3 4 5 6 n Line /te 2 Byte 2 Byte 5 6 7 0 1 2 3 4 5 6 1 2 3 4 5 6 7 0 1 2 3 4 5 6	R0 G1 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 n Line /te 2 Byte 2 Byte 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7	I Line 2 Byte 3 By R0 G1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 rte 2 Byte 3 8 3 8 3 8 3 8 rte 2 Byte 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0	I Line 2 Byte 3 Byte R0 G1 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 n Line /te 2 Byte 3 8 3 8 9 /te 2 Byte 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 0 1	I Line 2 Byte 3 Byte R0 G1 1 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 n Line /te 2 Byte 3 Byte GO B1 7 0 1 2 1 2 3 4 5 6 7 0 1 2	I Line 2 Byte 3 Byte R0 G1 R 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 n Line /te 2 Byte 3 Byte 3 Byte G0 B1 G1 C1 C1 C1 C1 C1 C1 1 2 3 4 5 6 7 0 1 2 3	I Line 2 Byte 3 Byte R0 G1 R2 1 2 3 4 5 6 7 0 1 2 3 4 I 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 I 2 3 4 5 6 7 0 1 2 3 4 I 2 3 4 5 6 7 0 1 2 3 4 I 2 3 4 5 6 7 0 1 2 3 4 I 2 3 4 5 6 7 0 1 2 3 4	I Line 2 Byte 3 Byte R0 G1 R2 1 2 3 4 5 6 7 0 1 2 3 4 5 I 2 3 4 5 6 7 0 1 2 3 4 5 I 2 3 4 5 6 7 0 1 2 3 4 5 n Line Z Byte 3 Byte G2 I 2 3 4 5 6 7 0 1 2 3 4 5 I 2 3 4 5 6 7 0 1 2 3 4 5	A Line 2 Byte 3 Byte R0 G1 R2 1 2 3 4 5 6 7 0 1 2 3 4 5 6 1 2 3 4 5 6 7 0 1 2 3 4 5 6 1 2 3 4 5 6 7 0 1 2 3 4 5 6 r G0 B1 G2 G2 1 2 3 4 5 6 7 0 1 2 3 4 5 6

8.3.2.2 GVSP_PIX_BAYRG10 "Bayer RG10"

Od	d Li	ne																													
1 E	yte							2 B	yte							3 B	yte							4 B	yte						
			F	20							F	80							G	i 1							G	i1			
0	1	2	3	4	5	6	7	8	9	Х	Х	Х	Χ	Х	Х	0	1	2	3	4	5	6	7	8	9	Х	Х	Х	Х	Х	Х
Eve	en L	ine																													
<u>1 E</u>	0 1 2 3 4 5 6 7 8 9 X X X X Even Line 1 Byte 2 Byte G0 G0														3 B	yte							4 B	yte							
			G	90							G	i0							В	81							В	81			
0	1	2	3	4	5	6	7	8	9	Х	Х	Х	Х	Х	Х	0	1	2	3	4	5	6	7	8	9	X	X	Χ	X	X	Χ

8.3.2.3 GVSP_PIX_BAYRG12 "Bayer RG12"

Odd Line

	in ic																													
yte	9						2 By	yte						3	B By	te							4 By	yte						
		F	80							R	0							G	i1							G	1			
1	2	3	4	5	6	7	8	9	10	11	Х	Х	Х	Х	0	1	2	3	4	5	6	7	8	9	10	11	Х	Х	Х	Х
en	Line																													
yte	9						2 By	yte							3 B	yte							4 By	yte						
G0 G0															В	81							В	1						
1	2	3	4	5	6	7	8	9	10	11	Х	Х	Х	Х	0	1	2	3	4	5	6	7	8	9	10	11	Х	Х	Х	Х
	yte 1 yte 1	1 2 en Line yte 1 2	yte F 1 2 3 en Line yte C 1 2 3	yte R0 1 2 3 4 en Line yte G0 1 2 3 4	R0 1 2 3 4 5 en Line yte G0 1 2 3 4 5	R0 1 2 3 4 5 6 en Line yte G0 1 2 3 4 5 6	yte R0 1 2 3 4 5 6 7 en Line yte G0 1 2 3 4 5 6 7	yte 2 By R0 1 1 2 3 4 5 6 7 8 en Line yte 2 By G0 6 7 8 1 2 3 4 5 6 7 8	yte 2 Byte R0 2 1 2 3 4 5 6 7 8 9 en Line yte 2 Byte gte 2 Byte G0 1 2 3 4 5 6 7 8 9	yte 2 Byte R0 1 1 2 3 4 5 6 7 8 9 10 en Line yte 2 Byte gte 2 Byte G0 1 2 3 4 5 6 7 8 9 10	yte 2 Byte R0 R 1 2 3 4 5 6 7 8 9 10 11 en Line yte 2 Byte G0 G G 1 2 3 4 5 6 7 8 9 10 11	yte 2 Byte R0 R0 1 2 3 4 5 6 7 8 9 10 11 X en Line yte 2 Byte G0 G0 G0 1 2 3 4 5 6 7 8 9 10 11 X	yte 2 Byte R0 R0 1 2 3 4 5 6 7 8 9 10 11 X X en Line yte 2 Byte G0 G0 G0 1 2 3 4 5 6 7 8 9 10 11 X X	yte 2 Byte R0 R0 1 2 3 4 5 6 7 8 9 10 11 X X X en Line yte 2 Byte G0 G0 G0 1 2 3 4 5 6 7 8 9 10 11 X X X	yte 2 Byte 3 R0 R0 1 2 3 4 5 6 7 8 9 10 11 X X X X en Line yte 2 Byte 2 Byte G0 G0 G0 1 2 3 4 5 6 7 8 9 10 11 X X X	yte 2 Byte 3 By R0 R0 R0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 en Line yte 2 Byte 3 B G0 G0 G0 1 2 3 4 5 6 7 8 9 10 11 X X X 0	yte 2 Byte 3 Byte R0 R0 R0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 en Line yte 2 Byte 3 Byte 3 Byte G0 G0 G0 G0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1	yte 2 Byte 3 Byte R0 R0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 en Line yte 2 Byte 3 Byte G0 G0 G0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2	yte 2 Byte 3 Byte R0 R0 C 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 en Line yte 2 Byte 3 Byte G0 G0 G0 E 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3	yte 2 Byte 3 Byte R0 R0 G1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 en Line yte 2 Byte 3 Byte G0 G0 G0 B1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4	yte 2 Byte 3 Byte R0 R0 G1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 en Line yte 2 Byte 3 Byte G0 G0 B1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5	yte 2 Byte 3 Byte R0 R0 G1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 en Line yte 2 Byte 3 Byte G0 G0 B1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6	yte 2 Byte 3 Byte R0 R0 G1 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 en Line yte 2 Byte 3 Byte G0 G0 B1 1 2 3 4 5 6 7	yte 2 Byte 3 Byte 4 Byte R0 R0 G1 G1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 Image: state 2 Byte 3 Byte 4 Byte Image: state 2 Byte 3 Byte 4 Byte Image: state 2 Byte 3 Byte 4 Byte G0 G0 B1 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 Image: state 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8	yte 2 Byte 3 Byte 4 Byte R0 R0 G1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 I 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 on G0 G0 B1 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9	yte 2 Byte 3 Byte 4 Byte R0 R0 G1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 In 2 3 4 5 6 7 8 9 10 en Line yte 2 Byte 3 Byte 4 Byte G0 G0 B1 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10	yte 2 Byte 3 Byte 4 Byte R0 R0 G1 G 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 en Line yte 2 Byte 3 Byte 4 Byte G0 G0 B1 B 1 2 3 4 5 6 7 8 9 10 11	yte 2 Byte 3 Byte 4 Byte R0 R0 G1 G1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X en Line yte 2 Byte 3 Byte 4 Byte G0 G0 B1 B1 B1 1 2 3 4 5 6 7 8 9 10 11 X	yte 2 Byte 3 Byte 4 Byte R0 R0 G1 G1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 <	yte 2 Byte 3 Byte 4 Byte R0 R0 G1 G1 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X 0 1 2 3 4 5 6 7 8 9 10 11 X X X X X X X <

8.3.2.4 GVSP_PIX_BAYRG10_Packed (Bayer10bit, Packed output)

Odd Line

																-				-			
					R	0											G	0					
2	3	4	5	6	7	8	9	0	1	Х	Х	0	1	Х	Х	2	3	4	5	6	7	8	9
Eve	n Liı	ne																					
					G	i1									В	0							
2	3	4	5	6	7	8	9	0	1	Х	Х	0	1	Х	Х	2	3	4	5	6	7	8	9

8.3.2.5 GVSP_PIX_BAYRG12_Packed (Bayer12bit, Packed output)

Odd Line

						R0											(G0					
4	5	6	7	8	9	10	11	0	1	2	3	0	1	2	3	4	5	6	7	8	9	10	11
Eve	n Li	ne												_	-		-				-		
						G1												B0					
4	5	6	7	8	9	10	11	0	1	2	3	0	1	2	3	4	5	6	7	8	9	10	11

8.3.2.4 GVSP_PIX_RGB8_PACKED "RGB 8Packed"

1 Byt	te						21	Byte	į		_	_		3	Byt	е						4 By	/te
			R	0							G	0							В	0			
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7

8.3.2.5 GVSP_PIX_RGB10V1_PACKED "RGB 10V1 Packed"

11	By	te	2 Byte										3 Byte									4 Byte										
	R0		G0		E	30			R0								G0							B0								
0		1	0	1	0	1	Х	Χ	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7

8.3.2.6 GVSP_PIX_RGB10V2_PACKED "RGB 10V2 Packed"

1 Byte 2 By							yte	3 Byte										4 Byte														
R0												C	G0											B0								
0	1	2	3	4	5	6	3	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	Χ	Χ

Connector	Value
RJ-45_1	BAYRG8 BAYRG10 BAYRG12 BAYRG10_Packed BAYRG12_Packed RGB8 RGB10V1Packed RGB10V2Packed

Note: If the start line of ROI is set at even line, GB pixel format is automatically output instead of RG pixel format.
8.4. Video timing

8.4.1 Horizontal Timing

The horizontal timing for Continuous mode, full frame and partial scan are shown below. This is common for both Bayer color imager and monochrome IR imager.

1 Clock =51.324MHz (19.48ns) 1CLK: 1 Pixel clock period OB: Optical black LVAL is HIGH in the period of optical black and effective video periods DVAL is HIGH in the effective video period

Fig.27 Horizontal Timing

8.4.2 Vertical Timing

The vertical timing for Continuous mode and full frame scan are shown below. This is common for both Bayer color imager and monochrome IR imager

If JAI Partial Scan = False,

1L = 1660 clock (32.344µs) 1L : 1 LVAL period OB: optical black FVAL is HIGH in the optical black and effective video periods LVAL is always output DVAL is output during the effective lines

This timing chart shows camera timing. The output through GigE interface is only effective lines.

Fig.28 Vertical Timing

8.4.3 Partial Scan Vertical Timing

The following chart shows the vertical timing of partial scanning in the continuous mode. The horizontal timing for partial scan is the same as full scan. This is common for Channel 1 (visible, color) and Channel 2 (near-IR)

If JAI Partial Scan = True,

Calculation example

Reference	JAI Partial Scan	Height	Offset Y	Total Line	FPS
Full Line	False	966	0	982	31.484
Full Line	True	966	0	978	31.613
Center 2/3 Partial	True	644	160	720	42.941
Center 1/2 Partial	True	482	242	590	52.403
Center 1/4 Partial	True	242	362	398	77.682
Center 1/8Partial	True	120	422	302	102.380
Center 8 Line	True	8	478	212	145.84

9. Network configuration

• For details of the network settings, please refer to the "Getting Started Guide" supplied with the JAI SDK.

9.1. GigE Vision Standard Interface

The AD-130GE is designed in accordance with the GigE Vision standard. Digital images are transmitted over Cat5e or Cat6 Ethernet cables. All camera functions are also controlled via the GigE Vision interface.

The camera can operate in Continuous mode, providing an endless stream of images. For capturing individual images related to a specific event, the camera can also be triggered. For precise triggering, it is recommended to use a hardware trigger applied to the Hirose 12-pin connector. It is also possible to initiate a software trigger through the GigE Vision interface. However, when using a software trigger, certain latency inherent to the GigE interface must be expected. This latency, which manifests itself as jitter, greatly depends on the general conditions and traffic on the GigE connection. The frame rate described in this manual is for the ideal case and may deteriorate depending on conditions.

When using multiple cameras (going through a switch and/or a single path) or when operating in a system with limited transmission bandwidth the Delayed Readout Mode and Inter-Packet Delay functions can be useful.

9.2. Equipment to configure the network system

9.2.1 PC

The PC used should hav	e the following performance or better
1) Recommended CPU	: Core2 Duo 2.4GHz or better,
	Better than Core2 Extreme
2) Recommended memo	ory : 2Gbyte or more
3) Video card	: Better than PCI Express Bus Ver.1.0 x16
VRAM sh	ould be better than 256MByte, DDR2
4) Other :	The resident software should not be used

9.2.2 Cables

GigEVision configures the system by using 1000BASE-T.

In the market, CAT5e (125MHz), CAT6 (250MHz) and CAT7 (600MHz) cables are available for 1000BASE-T. There are crossover cables and straight through cables available. Currently, as most equipment

complies with Auto MDI/MDI-X, please use straight through cables. (Among crossover cables, a half crossover type exists, which the Ethernet will recognize as 100BASE-T).

9.2.3 Network card (NIC)

The network card should comply with 1000BASE-T and also have the capability of JUMBO FRAMES. When the jumbo frame size is set at a larger number, the load on the CPU will be decreased. Additionally, as the overhead of the packet is decreased, the transmission will have more redundancy.

JAI confirms the following network cards.				
NIC Manufacture	Туре	PCI-X Bus	PCI-Express Bus	
Intel	PRO/1000MT	.1		32bit or 64bit
	Server Adapter	N	_	33/66/100/133 MHz
Intel	PRO/1000MT Dual Port	.1		32bit or 64bit
	Server Adapter	N	_	33/66/100/133 MHz
Intel	PRO/1000GT Quad			32bit or 64bit
	Port	\checkmark	_	66/100/133 MHz
	Server Adapter			
Intel	PRO/1000PT		$\sqrt{(x1)}$	2.5Gbps uni-directional
	Server Adapter		v (X I)	5Gbps bi-directional
Intel	Pro/1000 CT		$\sqrt{(x1)}$	2.5Gbps uni-directional
	Desktop adaptor		v (X I)	5Gbps bi-directional
Intel	Gigabit ET2 Quad			10Gbps uni-directional
	port	—	√ (x4)	20Gbps bi-directional
	Server Adapter			
Intel	Gigabit ET Dual port		$\left(\cdot \cdot \cdot \right)$	10Gbps uni-directional
	Server Adapter		V (X4)	20Gbps bi-directional
Intel	Gigabit EF Dual port		$\left \left(\mathbf{x} \mathbf{A} \right) \right $	10Gbps uni-directional
	Server Adapter		v (X4)	20Gbps bi-directional

9.2.4 Hub

It is recommended to use the metal chassis type due to the shielding performance. As the hub has a delay in transmission, please note the latency of the unit.

9.3. **Recommended Network Configurations**

Although the AM-800GE and AB-800GE conforms to Gigabit Ethernet (IEEE 802.3) not all combinations of network interface cards (NICs) and switches/routers are suitable for use with the GigE Vision compliant camera.

JAI will endeavor to continuously verify these combinations, in order to give users the widest choice of GigE components for their system design.

• For details of the network settings, please refer to the "Getting Started Guide" supplied with the JAI SDK.

9.3.1 Guideline for network settings

To ensure the integrity of packets transmitted from the camera, it is recommended to follow these simple guidelines:

- 1. Whenever possible use a peer-to-peer network.
- 2. When connecting several cameras going through a network switch, make sure it is capable of handling jumbo packets and that it has sufficient memory capacity.
- 3. Configure inter-packet delay to avoid congestion in network switches.
- 4. Disable screen saver and power save functions on computers.
- 5. Use high performance computers with multi-CPU, hyper-thread and 64-bit CPU, etc.
- 6. Only use Gigabit Ethernet equipment and components together with the camera.
- 7. Use at least Cat5e and preferably Cat6 Ethernet cables.
- 8. Whenever possible, limit the camera output to 8-bit.

9.3.2 Video data rate (network bandwidth)

The video bit rate fo	the AD-130GE in	Continuous mode is:
-----------------------	-----------------	---------------------

Model	Pixel Type	Frame Rate	Packet (Packet 1500)
AD-130GE	MONO8	31Frame/s	328Mbit/s
	MONO10_PACKED	31Frame/s	492Mbit/
	MONO12_PACKED		
	MONO10	31Frame/s	655Mbit/s
	MONO12		
	BAYRG8, (BAYGB8)	31Frame/s	328Mbit/s
	BAYRG10 Packed,	31Frame/s	492Mbit/
	(BAYGB10 Packed)		
	BAYRG12 Packed,		
	(BAYGB12 Packed)		
	BAYRG10, (BAYGB10)	31Frame/s	655Mbit/s
	BAYRG12, (BAYGB12)		
	RGB8	29.5rame/s	940Mbit/s
	BGR10V1, BGR10V2	22.1Frame/s	940Mbit/s

• In the case of using Jumbo Frames (16K), the packet data will be improved by 2%.

• Note for setting packet size

The packet size is set to 1476 as the factory default. Packet size can be modified in the GigE Vision Transport Layer Control section of the camera control tool (see below). For AD-130GE, users may enter any value for the packet size and the value will be internally adjusted to an appropriate, legal value that complies with the GenICam standard. Thus, the actual packet size may be different than the value entered by the user.

Caution: do not set the packet size larger than the maximum setting available in the NIC or switch to which the camera is connected. Doing so will cause output to be blocked.

	-	
Pixel format	Possible packet size	
8bit	36 + 8 x n	232 ≤ n ≤ 1348
10bit_Packed,	36 + 12 x n	174 ≤ n ≤ 1011
12bit_Packed		
10bit,12bit	36 + 16 x n	174 ≤ n ≤ 1011
RGB 8bit	36 + 24 x n	58 < n < 337

The following table shows possible packet size on each pixel format.

• Note for calculation of Data Transfer Rate

Setting parameter

Item	Unit	Symbol
Image Width	[pixels]	А
Image Height	[pixels]	В
Bits per Pixel	[bits]	С
Frame Rate	[fps]	D
Packet Size	[Bytes]	Е
Number of Packets (including Data Leader & Trailer	[packets]	G
Packet)		_
DataTransfer Rate	[Mbit/s]	J

Fixed value

Item	Unit	value
Data Leader Packet Size	[Bytes]	90
Data Trailer Packet Size	[Bytes]	62

Formula to calculate Data Transfer Rate

<u>J= {90+62+(E+18)*(G-2)} *8*D/1000000</u>

Where, <u>G=ROUNDUP{A*B*C/8/(E-36)}+2</u>

The following table shows Bits per Pixel which depends on the pixel format.

Pixel format	Bit
MONO8	8
MONO10	16
MONO10Packed	12
MONO12	16
MONO12Packed	12
BAYRG8	8
BAYRG10	16
BAYRG12	16
RGB8	24
RGB10V1Packed	32
RGB10V2Packed	32

Calculation example: AD-130GE Pixel type Mono8

Item	Unit	Symbol	Setting
Image Width	[pixels]	А	1296
Image Height	[pixels]	В	966
Bits per Pixel	[bits]	С	8
Frame Rate	[fps]	D	31.484
Packet Size	[Bytes]	E	1428
Number of Packets (including Data Leader & Trailer Packet)	[packets]	G	
Transfer Data Rate	[Mbit/s]	J	

 $\label{eq:GROUNDUP} G=ROUNDUP\{(1296x966x8/8/(1428-36))+2=900+2=902\\J=\{90+62+(1428+18)x(902-2))x8x31.484/1000000=328\\ Mbit/s$

9.3.3 Simplified calculation (Approximate value)

A simple way to calculate the approximate data transfer rate is the following. Transfer data = image width (pixel) x Image Height (pixel) x depth per pixel (depending on the pixel format) x frame rate / 1,000,000 (convert to mega bit)

In the case of the AD-130GE with the full image and Mono 8bit pixel format; The data transfer rate = 1296 x 966 x 8 x 31.484 / 1000000 = 315 Mbit/s

9.3.4 Note for 100BASE-TX connection

- In order to use 100Mbps network, 100BASE-TX and Full Duplex are available. Half Duplex cannot be used.
- In the case of connecting on 100BASE-TX, the maximum packet size should be 1500 bytes.
- In the case the of connecting on 100BASE-TX, the specifications such as frame rate, trigger interval and so on described in this manual cannot be satisfied.

Pixel Type	Frame rate at Full Frame scan[fps]
MONO8, BAYRG8, BAYGB8	Approx. 7
MONO10_PACKED,MONO12_PACKED	Approx. 5
MONO10, MONO12, BAYRG10,	Approx. 3.5
BAYGB10,BAYRG12, BAYGB12	
RGB8_Packed	Approx. 2.5
RGB10V1_Packed,RGB10V2_Packed	Approx. 2

Note: The above frame rates are based on approx. 70Mbps of total data.

- 9.4. GigE camera connecting examples
- 9.4.1 Using a switching hub for 1 port

- All cameras and NIC belong to the same subnet
- The accumulated transfer rate for all cameras should be within 800Mbps
- The packet size and the packet delay should be set appropriately in order for the data not to overflow in the switching hub.

9.4.2 Connecting a camera to each port of a multi-port NIC

- This is the example for using a 4-port NIC
- The pair of the connecting camera and the NIC constructs one subnet. As for the IP configuration, it is appropriate to use the persistent IP.
- In this case, each camera can use the maximum 800Mbps bandwidth. However, the load for the internal bus, CPU and the application software become heavy, so a powerful PC will most likely be required.

9.4.3 The data transfer for multiple cameras

9.4.3.1 If delayed readout is not used in continuous mode

• The packet delay should be set larger. The data traffic is controlled by the buffer of the hub. It is necessary to check the buffer value of the unit.

9.4.3.2 If delayed readout is not used in trigger mode

• The packet delay should be set larger. The data traffic is controlled by the buffer of the hub. It is necessary to check the buffer value of the unit.

9.4.3.3 If delayed readout is used

• The packet delay should be set smaller, and the packet delay trigger controls the data traffic. If the camera has a pulse generator, it can control the data traffic.

10. Functions (Conforming to GenICam SFNC 1.3)

This section describes naming of GenICam SFNC ver.1.3.

AD-130GE uses the feature names specified in GenICam SFNC ver.1.3 but some functions are not implemented. AD-130GE also provides feature names used in previous JAI cameras.

10.1. Acquisition function

10.1.1

Before using trigger and exposure controls, various acquisition controls must be set. The operation of the camera depends on the interrelationship of all three feature sets.

Fig.30 Acquisition control, Trigger/Exposure control work flow **Basic image acquisition flow**

The basic commands for acquiring images are as follows:

Acquisition mode	To determine the number of the frame to be captured
Trigger Selector	Acquisition Start Trigger Select if the acquisition start is controlled externally Acquisition End Select if the acquisition end is controlled externally
Trigger Selector	Frame start Select if the acquisition of the frame is controlled externally.

Exposure mode To set the exposure method

The flow of these commands is shown below.

The following drawings are based on the conditions that the Acquisition mode is Single and the Trigger selector is Frame Start.

If the acquisition start is set at ON (The acquisition is controlled externally)

If the acquisition start is set at OFF (The acquisition is controlled internally)

The following sections provide the details for each command set.

10.1.2 Acquisition mode

The AD-130GE has three settings for capturing images.

🗆 c) Acquisition Control		
Acquisition Mode	Continuous	M
Acquisition Start	Continuous	15
Acquisition Stop	SingleFrame	
Thisses Calassay	For the Charles	

① Single frame

AcquisitionStart command outputs one frame. Then the acquisition is stopped. ② Continuous

AcquisitionStart command outputs frames until AcquisitionEnd is initiated.

10.1.2.1 Single Frame

In single frame mode, executing the AcquisitionStart command causes one frame to be captured. After one frame is captured, this operation is automatically stopped. In order to restart the capture, it is necessary to input the AcquisitionStart command again. BlockID is not reset until AcquisitionEnd is input and is incremented when the AcquisitionStart command is called.

- Normal single frame operation
 - 1) AcquisitionStart command is input
 - 2) AcquisitionActive becomes "TRUE" (accepts capture)

3) 1 frame is output

4) AcquisitionActive becomes "FALSE" (stop capturing)

This drawing shows a case where the trigger is "OFF". If the trigger is ON, FrameActive becomes "TRUE" on the different timing of AcquisitionActive.

• Forcing acquisition to stop

While AcquisitionActive is "TRUE", if AcquisitionEnd or AcquisitionAbort is initiated, AcquisitionActive becomes "FALSE" (stop capturing).

10.1.2.2 Continuous mode

In this mode, when the AcquisitionStart command is set, the image is continuously output at the current frame rate. This is the default setting for the AD-130GE.

- 1) AcquisitionStart command is input
- 2) AcquisitionTriggerWait becomes effective
- 3) AcquisitionActive becomes "TRUE"
- 4) Images begin outputting continuously
- 5) AcquisitionEnd command is sent
- 6) AcquisitionActive becomes "FALSE". At this moment, the output stops.

Fig.32 Continuous timing

This drawing shows a case where the trigger is "ON". If the trigger is OFF, FrameActive becomes "TRUE" at the same timing as AcquisitionActive.

10.2. Trigger Control

10.2.1 TriggerSelector(TriggerMode)

This is the function to set the trigger operation. This will set how to control the output and the exposure.

□ Trigger Selector*	Frame Start	•
Trigger Mode* Trigger Software*	Acquisition Start Acquisition End	
Trigger Source* Trigger Activation*	Frame Start JAI Acquisition T	ransfer Start
	I	
Frame Start	Trigger	Set the frame start externally

Stream

10.2.1.1 Acquisition

Transfer Start

This is the trigger function to control the output. This controls AcquisitionStart and AcquisitionEnd. A description of the configuration process is as follows:

Set the stream start externally

AcquisitionStart trigger:	Set whether the capture start is to be controlled externally or not.		
TriggerMode On:	After AcquisitionStart command is input, input the signal selected by AcquisitionStart trigger as the trigger, and make AcquisitionActive effective.		
TriggerMode Off:	AcquisitionStart command is input. It makes AcquisitionActive effective regardless of AcquisitionStart trigger.		
AcquisitionEnd trigger:	Set whether the end of the capture is to be controlled externally or not.		
TriggerMode On:	While AcquisitionActive is effective, input the signal selected by AcquisitionEnd as the trigger, and make AcquisitionActive invalid.		
TriggerMode Off:	AcquisitionStart command is input. It makes AcquisitionActive invalid regardless of the trigger source.		

10.2.1.2 Exposure

These commands are used for setting the exposure control. FrameStart is used for trigger input. If ExposureMode is set to Timed or TriggerWidth except OFF, the combination of the ExposureMode setting and FrameStart setting will determine the type of exposure and whether triggering is OFF or ON.

The following table shows the combination and the operation.

TriggerSelector ExposureMode	Frame Start	Operation	Previous JAI trigger name (for reference)
OFF	OFF or ON	Trig OFF(Free run) No Exposure Control	Trigger OFF
Timed	OFF	Trig OFF(Free run) Exposure Control Is possible	Trigger OFF
	ON	Trig On	EPS
TriggerWidth	OFF	Trig OFF(Free run) No Exposure Control	Trigger OFF
	ON	Trig On	PWC

• FrameStart trigger: Set whether the start of the frame is to be controlled externally or not.

TriggerMode On:While AcquisitionActive is effective and ExposureMode is
set at Timed or TriggerWidth, start exposure using the
signal selected by FrameStart trigger.TriggerMode Off:While AcquisitionActive is effective, self-running

operation takes place.

10.2.2 Triggersoftware

This is one of the trigger sources and is the software trigger command. This has one command signal to each of the 6 items of TriggerSelector. To use this function, TriggerSource must be set at TriggerSoftware.

10.2.3 Triggersource

The following signals can be selected as the trigger signal source.

	Trigger Source*	Line5 - Optical In 1 🛛 🛛 🔀	
	Trigger Activation*	Line5 - Optical In 1 💦 💦	
	Trigger Source Inverter	Line6 - Optical In 2	
	Exposure Mode	Line/-IILIn I Line9-IVDS In	
	Exposure Time	Line9 - TTL In 2	
	Exposure Time (us)	Software	
	Exposure Time (Raw)	Pulse Generator 0	
	Pre-dump Mode	Pulse Generator 1 Pulse Generator 2	
Ξ	d) JAI Acquisition Control	Pulse Generator 2 Pulse Generator 3	
	Acquisition Frame Rate (JAI)	Software Trigger 0	
	Shutter Mode	Software Trigger 1	~
Ti Sp tr	r igger Source* secifies the internal signal or physical input Line to use gger must have its TriggerMode set to On.	Software Trieger 2 Software Trieger 3 Action 1 Action 2 Not Connected	

10.2.4 TriggerActivation

This determines the behaviour of the trigger.

RisingEdge :	Initiate at the signal rising edge
FallingEdge:	Initiate at the signal falling edge
LevelHigh:	Initiate during the signal high level
LevelLow:	Initiate during the signal low level

Note: When TriggerWidth is used, TriggerActivation should be set at either LevelHigh or LevelLow.

	RisingEdge	FallingEdge	LevelHigh	LevelLow
Timed	0	0	×	×
TrigegrWidth	×	×	0	0
Timed-JAI Pre-Dump	0	0	×	×

10.3. Exposure Control

This is the function to manage the exposure settings.

10.3.1 Exposure Mode

The exposure mode can be selected from the following choices.

	1 0,00	
Exposure Mode	Timed 💌	N
Exposure Time	Timed	Kr.
Exposure Time (us)	Trigger Width	ľ

Timed: The exposure time is to be set in microseconds.

If FrameStart in TriggerSelector is "OFF", the exposure is controlled in Free Run.

If FrameStart in TriggerSelector is "ON", this functions as the EPS mode.

Note: JAI Pre-Dump can be available by using TriggerOption.

TriggerWidth: This mode controls the exposure time by the pulse width. If FrameStart in TriggerSelector is "OFF", The camera operates in Free Run. If FrameStart in the TriggerSelector is "ON", this functions as the PWC mode.

The following is the table for the combination of ExposureMode and TriggerControl and its function.

TriggerSelector ExposureMode	Frame Start	Operation	Previous JAI trigger name (for reference)
OFF	OFF or	Trig OFF(Free run)	Trigger
	ON	Exposure controllable	OFF
Timed	OFF	Trig OFF(Free run) Exposure control is possible	Trigger OFF
	ON	Trig On	EPS
TriggerWidth	OFF	Trig OFF(Free run) No Exposure control	Trigger OFF
	ON	Trig On	PWC

10.3.2 ExposureTime

This is effective only if ExposureMode is set to "Timed". This command can set the exposure time.

The setting can be done in $1\mu s$ / step.

Minimum:	11.49μs
Maximum:	31.76msec

10.3.3 ExposureAuto

This is auto exposure control function and is effective only in the "Timed" mode. The reference video level is controlled by JAI AGC Reference. ExposureAuto includes OFF, Once and Continuous modes. The following detailed settings are aslo possible. ExposureAuto speed: The reaction speed can be controlled ExposureAuto Max: Set the maximum exposure time معید. usureAuto Min: GainAutoReference: Set the minimum exposure time

Set the reference video level for operation

10.4. ActionControl

ActionControl is used to activate the specific functions of multiple cameras on the same network at the same time. For instance, it can be used to trigger multiple cameras at the same time.

ActionControl appears as two inputs (Action 1, Action 2) and is connected with 6 Triggers, CounterReset of the counter, CounterTrigger and Timer.

If ActionControl is used, the input source to the trigger should be set to Action 1 or Action 2 in advance.

ActionDeviceKey 10.4.1

Set the same value to cameras which are operated at the same time.

10.4.2 ActionSelector

Select Action 1 or Action 2.

10.4.3 **ActionGroupMask**

Set the mask value for grouping Action 1 operation.

ActionGroupKey 10.4.4

Set the key (value) to operate Action 1.

Operation Mode 10.5.

AD-130GE has the setting for the exposure timing when the trigger pulse is applied and the following 9 operation modes and OB transfer and ROI modes.

1	Trigger mode	Continuous mode
2	Trigger mode	Edge Pre-Select Trigger
3	Trigger mode	Pulse Width Control Trigger
4	Trigger mode	Reset Continuous Trigger
5	Trigger mode	Sequence EPS
6	Trigger mode	Delayed readout EPS
7		Smearless
8		OB transfer mode
9		ROI mode

10.5.1 The exposure timing when the trigger pulse is input

10.5.1.1 Auto-detect LVAL-sync / async accumulation

This function replaces the manual setting found in older JAI cameras. Whether accumulation is synchronous or asynchronous in relationship to LVAL depends on the timing of the trigger input. When a trigger is received while FVAL is high (during readout), the camera works in LVAL-synchronous mode, preventing reset feed-through in the video signal. There is a maximum jitter of one LVAL period from issuing a trigger to accumulation start. When an external trigger is received during FVAL low, the camera works in LVAL-asynchronous (no delay) mode.

This applies to both Pre-Select (PS) trigger and Pulse Width trigger (PW) modes.

- (1) In this period camera executes trigger at next LVAL (prevents feed-through noise)
- (2) Avoid trigger at FVAL transition (+/- 1 LVAL period), as the function may randomly switch between "next LVAL" and "immediate".
- (3) In this period camera executes trigger immediately (no delay)

Fig. 33 Auto-detect LVAL sync /a-sync accumulation

10.5.1.2 Relation between the external trigger mode and LVAL Sync/Async

Operation : Exposure Mode (JAI)	Smearless Enable	LVAL SYNC	LVAL ASYNC
Edge pre-select	False	0	0
	True	×	0
Pulse-width	False	×	0
control	True	×	0
RCT Mode	-	×	0
Sequential	False	× (note1)	0
EPS trigger	True	×	0
Delayed readout	False	0	0
EPS trigger	True	×	0
Delayed readout	False	×	0
PWC trigger	True	×	0

Note 1: In the sequence trigger mode, each entry in the sequence can be set to its own exposure time and gain. Therefore, the LVAL sync operation does not function. Please arrange for the trigger input timing to occur during FVAL LOW (LVAL Async).

10.5.2 Continuous mode

For applications not requiring asynchronous external triggering, this mode should be used for continuous operation.

To use this mode

Set function:

Acquisition mode Trigger mode Sync mode Exposure Mode Pixel Format Other functions : Continuous : OFF : Sync / Async : Timed : 8bit, 10bit, 12bit

10.5.3 Edge Pre-Select (EPS) trigger mode

An external trigger pulse initiates the capture, and the exposure time (accumulation time) is the fixed shutter speed set by registers. The accumulation can be LVAL synchronous or LVAL asynchronous. The resulting video signal will start to be read out after the selected shutter time.

To use this mode:		
Set function:	Acquisition mode	:Frame Start
	Trigger mode	:ON
	Sync mode	:Sync / Async
	Exposure Mode	: Timed
	Exposure time	:Exposure time/Exposure time(us)/ Exposure time(Raw)
	Other functions	
Input:	External Trigger	Trigger Source

This function can be set by selecting Edge pre-select in Exposure mode of JAI Acquisition Control. However, Acquisition Mode, Sync Mode, Exposure Time, and so on should be set.

🗆 d) JAI Acquis	sition Control	
Acquisition Fra	me Rate (JAI)	Full Speed
Shutter Mode		Programmable Exposure in lines
Exposure Time	Raw (JAI)	972
Exposure Time	(us) (JAI)	32502
Exposure Mode	(JAI)	Continuous trigger 🛛 📉
Auto Exposure	Value	Continuous trigger
Smearless Enab	ile	Edge pre-select
🗆 e) Analog Co	ntrol	Puise-wiath control BCT Mode
⊞ Gain Selector		Sequential EPS trigger
Gain Auto		Delayed readout EPS trigger
AGC Reference		Delayed readout PWC trigger
Auto Gain Valu	4	

Important Note:

The trigger minimum active period is 2L and the minimum interval of the trigger is shown below.

SYNC Mode	Smearless Enable	Minimum trigger interval (Line)	
SYNC Mode=	False	LVAL ASYNC	Frame interval in continuous operation + Larger Exposure Time(Raw) between Color and IR+ 5L
SYNC		LVAL SYNC	① If Exposure Time(Raw) range is 3L to (Frame interval in continuous operation(L) - 1L)
			Frame interval in continuous operation + Difference between Color and IR + 5L
			(2) If JAI Partial Scan is set at True and Exposure Time(Raw) range is Frame interval in continuous operation(L) to 982L
			Frame interval in continuous operation(L)
			+(Difference between Color and IR exposure time)+
			SL + (Smaller exposure time between color and IR -Frame interval in continuous operation(L) + 1L)
	True	LVAL	Smear less period[196L]+ 1 + (Larger exposure time
		ASYNC	between color and IR) + Frame interval in continuous operation(L) + 6L
SYNC Mode=	False	LVAL ASYNC	Frame interval in continuous operation(L) + Exposure Time(Raw) + 5L
ASYNC		LVAL SYNC	 If Exposure Time(Raw) range is 3L to (Frame interval in continuous operation(L) - 1L)
			Frame interval in continuous operation(L) + 5L
			② If JAI Partial Scan is set to True and Exposure Time(Raw) range is Frame interval in continuous operation (L) to 982
			Frame interval in continuous operation(L) + Exposure Time(Raw) - Frame interval in continuous operation(L) + 6L
	True	LVAL ASYNC	Smearless period[196L]+ 1 +Exposure Time(Raw)+ Frame interval in continuous operation (L)+ 6L
1) LVAL SYNC/ASYNC can be selected automatically.			
2) Frame interval of full frame in continuous operation is 982L and if JAI partial scan is set			

2) Frame interval of full frame in continuous operation is 982L and if JAI partial scan is to True, please refer to 8.4.3 Partial Scan Vertical Timing for the frame interval.

3) If Smearless Enable is set to True, only LVAL Async is available.

10.5.3.1 Timing chart

Following charts are examples if Sync mode is set to Sync and in full frame operation. If Sync mode is set to Sync, the timing of trigger input is the same for both camera #0 and #1. The exposure time can be set individually but the output timing of the video output is the same.

AD-130GE

Note: 2.8L to 3.8L after the exposure end of the longest exposure. 1 LVAL = 1660 clock (32.344 μ s)

Fig. 34 Edge Pre-select LVAL asynchronous

Fig.35 Edge Pre-select LVAL asynchronous details

AD-130GE

Note: 2.8L after the exposure end of the longest exposure

Fig. 36 Edge Pre-select LVAL synchronous

Fig. 37 Edge Pre-select LVAL synchronous details

Note for setting Exposure Time

For instance, if the exposure time for the color channel is 1/31 sec and that of the monochrome IR channel is 1/87,000 sec, the picture quality of the monochrome IR channel may not be acceptable due to CCD's operational principle. Accordingly, in EPS mode, each channel's exposure time should be set the same. If it is necessary to set different exposure times, please confirm the picture quality in advance of usage.

10.5.4 Pulse Width Control (PWC) trigger mode

In this mode the accumulation time is equal to the trigger pulse width. Here it is possible to have a long time exposure. The maximum recommended time is <60 frames. In PWC mode, only LVAL asynchronous accumulation is effective.

To use this mode:		
Set function:	Acqusition mode	:Frame Start
	Trigger mode	: ON
	Sync mode	:Sync / Async
	Exposure Mode	:Trigger Width
	Exposure time	:Exposure time/Exposure time(us)/ Exposure time(Raw)
	Other functions	
Input:	External Trigger	Trigger Source

This function can be set by selecting Pulse width control in Exposure mode of JAI Acquisition Control. However, Acquisition Mode, Sync Mode, Exposure Time, and so on should be set.

🗆 d) JAI Acquisition Control	
Acquisition Frame Rate (JAI)	Full Speed
Shutter Mode	Programmable Exposure in lines
Exposure Time Raw (JAI)	972
Exposure Time (us) (JAI)	32502
Exposure Mode (JAI)	Continuous trigger 📉
Auto Exposure Value	Continuous trigger
Smearless Enable	Edge pre-select
🗆 e) Analog Control	Pulse-width control
🖽 Gain Selector	Sequential EPS trigger
Gain Auto	Delayed readout EPS trigger
AGC Reference	Delayed readout PWC trigger
Auto Gain Value	

Important Note:

The minimum duration of the trigger is 2L. The minimum period of trigger is as follows.

SYNC Mode	Smearless Enable	Minimum Trigger interval (Line)	
SYNC Mode =SYNC	False	LVAL ASYNC	(Trigger Pulse width: Min.2L) + Frame interval in continuous operation(L) + 4L
	True	LVAL ASYNC	(Trigger Pulse width:Min.197L+2L) + Frame interval in continuous operation(L) + 4L
SYNC Mode =ASYNC	False	LVAL (Trigger Pulse width: Min.2L) + Frame interval in ASYNC continuous operation (L) + 4L	
	True	LVAL ASYNC	(Trigger Pulse width : Min.197L+2L) + Frame interval in continuous operation(L) + 4L
Pulse-width trigger is available only in LVAL Async accumulation.			

10.5.4.1 Timing chart

Following charts are the timing if Sync mode is set to Sync.

In this case, the trigger input is the same for both camera#0 and #1 and the output timing is the same.

AD-130GE

Fig. 39 Pulse Width Control LVAL asynchronous details

In PWC mode, when "Smearless ON" is selected, the actual accumulation time is the trigger pulse width minus Smearless active period (197L+2L).

If the trigger pulse width is shorter than 199L, the exposure is not active.

10.5.5 Smearless mode

This function can be used to reduce the smear coming from bright areas or objects within the image. This is effective for both EPS and PWC trigger modes. Before the accumulation starts, any charge that is stored in the pixel is dumped by a high-speed transfer. This can reduce the smear that is visible directly above a bright object in the image, but the smear showing below the object is unaffected.

At the falling edge of the trigger pulse the high speed transfer starts. This period is 6.34ms which is 196L. Thereafter the residual charge in the horizontal CCD register is read out in 1L and the new exposure starts. This function is available for both full scan and partial scan.

This function can be set if Smearless Enable in JAI Acquisition Control is set at True.

🗆 d) JAI Acquisition Control				
Acquisition Frame Rate (JAI)	Full Speed			
Shutter Mode	Programmable Exposure in lines			
Exposure Time Raw (JAI)	972			
Exposure Time (us) (JAI)	32502			
Exposure Mode (JAI)	Continuous trigger			
Auto Exposure Value	0			
Smearless Enable	False 🔀			
🗆 e) Analog Control	True			
🖽 Gain Selector	False			
Gain Auto	- JII			
AGC Poteroneo	0			

10.5.5.1 Sync=Sync, LVAL Async, Smearless Enable=True, EPS trigger

Fig. 40 Smearless, EPS trigger timing chart

10.5.5.2 Sync Mode=Sync, LVAL Async, Smearless Enable=True, PWC trigger

Fig 41. PWC timing chart with Smearless ON

10.5.6 Reset Continuous Trigger (RCT) mode

The RCT mode operates like EPS (edge pre-select) mode with smearless function. An external trigger pulse will immediately stop the video read out, reset and restart the exposure, then operate as normal mode until the next trigger. After the trigger pulse is input, a fast dump readout is performed. In the AD-130GE, this period is 6.34ms which is 196L. The exposure time is determined by the pre-set shutter speed. If no further trigger pulses are applied, the camera will continue in normal mode and the video signal is not output. The fast dump readout has the same effect as "smearless readout". Smear appearing above highlight areas is reduced for the trigger frame. The Reset Continuous Trigger mode makes it possible to use triggering in conjunction with a lens with video controlled iris.

To use this mode:			
Set function:	Acqusition mode	: Frame Start	
	Trigger mode	: ON	
	Sync mode	:Sync / Async	
	Exposure Mode	: Timed	
	Exposure time	:Exposure time/Ex Exposure time(Ra	posure time(us)/ w)
	Pre-dump mode	:ON	
	Other functions		
Input:	External Trigger	Trigger Source	
	,	· · -	
Pre-dump Mode		Off	N.

Pre-dump Mode	Off	N
🗆 d) JAI Acquisition Control	Off	
Acquisition Frame Rate (JAI)	On	

This function can be set by selecting RCT mode in Exposure mode of JAI Acquisition Control. However, Acquisition Mode, Sync Mode, Exposure Time, and so on should be set.

	d) JAI Acquisition Control	
	Acquisition Frame Rate (JAI)	Full Speed
	Shutter Mode	Programmable Exposure in lines
	Exposure Time Raw (JAI)	972
	Exposure Time (us) (JAI)	32502
	Exposure Mode (JAI)	Continuous trigger 🛛 📉
	Auto Exposure Value	Continuous trigger
	Smearless Enable	Edge pre-select
Ξ	e) Analog Control	Pulse-width control
Ð	Gain Selector	Sequential EPS trigger
	Gain Auto	Delayed readout EPS trigger
	AGC Reference	Delayed readout PWC trigger
	Auto Gain Value	

Important notes on using this mode

The minimum duration of the trigger is 2 LVAL. The minimum period of the trigger input is the following.

Sync mode:	Smearless period(196L)+1+ Exposure Time(RAW) + Frame interval in		
Async	continuous operation(L) + 6L		
Note: If the next trigger is input during the output of transfer signal, this output signal is			
immediately stopped and thrown away by the High Speed Transfer operation.			

AD-130GE

10.5.7 Sequential Trigger Mode (EPS)

This mode allows the user to define a preset sequence of up to 10 images, each with its own ROI, Shutter and Gain values. As each trigger input is received, the image data with the preset sequence is output as described below.

Fig.43 Sequential Trigger Mode

10.5.7.1 Setting parameters

Following parameters in Sequence control should be adjusted.

- (1) Sequence Mode:Sequence Mode = On is to set to Sequential EPS Trigger mode.
- (2) Sequence Repetition Count: (applicable value: 0~255)
 This sets how many times the sequence is repeated.
 If the last Sequence Repetition Count is completed, the sequence table is set to the Last Sequence setting. If further trigger pulses are input, the settings for the Last Sequence, are repeated until Reset Sequence is input.
 Sequence Repetition Count = 0 will cause the sequence to repeat indefinitely.

- (3) Last Sequence: (applicable value: 1~10)
 To determine how many sequences out of sequences 1 to 10 are executed as one consecutive sequence.
- (4) Sequence Selector:
 In the Sequence Selector, there are 10 sequence tables.
 Each Sequence has 8 setting parameters such as Sequence ROI Size X and Y、 Sequence ROI Offset X and Y、 Sequence Exposure Raw、 Sequence Master Gain Raw、 and Repeat Count in Each Step. In the Sequential EPS Trigger, the order to execute is from Sequence 1 settings.
- (5) Repeat Count in Each Step: (applicable value: 1~255)
 After the Sequence table is repeated as many as numbers set in "Repeat Count in Each Step", the next sequence table is activated.
- (6) Reset Sequence command:
 If the Reset Sequence is applied during sequence operation, the sequence operation is initialized to start at sequence 1.
- (7) Sequence Table Reset input:

The Sequence Table Reset is available from GPIO output port. This initializes the sequence operation by hardware trigger.

The following is how the settings appear in the GUI.

Ξ	3 i) Sequence Control		
	Sequence Mode	Off	
	Sequence Repetition Count	0	
	Last Sequence	1	
Ξ	Sequence Selector	Sequence 1	
	Repeat Count in Each Step	1	
	Sequence Exposure Time Raw	0	
	Sequence Master Gain Raw	-1	
	Sequence ROI Size X	1296	
	Sequence ROI Size Y	966	
	Sequence ROI Offset X	0	
	Sequence ROI Offset Y	0	
	Reset Sequence Settings	Push to Execute Command>	
	-		

10.5.7.2 Initial settings

The following are the default settings.

Camera 0	Sequence Control							
Sequence Mode	Off							
Sequence Repetition Count					0			
Last Sequence					1			
				S	equence			
Sequence Selector		RC	DI		E T'	Mastar Cair	Repeat Count	
Sequence Selector	Siz	ze –	Of	fset	Exposure 11me	Master Gain	in Each Step	
	Х	Y	Х	Y	Kaw	Kaw		
Sequence 1	1296	966	0	0	982	0	1	
Sequence 2	1296	966	0	0	982	0	1	
Sequence 3	1296	966	0	0	982	0	1	
Sequence 4	1296	966	0	0	982	0	1	
Sequence 5	1296	966	0	0	982	0	1	
Sequence 6	1296	966	0	0	982	0	1	
Sequence 7	1296	966	0	0	982	0	1	
Sequence 8	1296	966	0	0	982	0	1	
Sequence 9	1296	966	0	0	982	0	1	
Sequence 10	1296	966	0	0	982	0	1	

Camera 1	Sequence Control								
Sequence Mode	Off								
Sequence Repetition Count					0				
Last Sequence					1				
				Se	equence				
Sequence Selector		RC	DI		E	Master Cain	Repeat Count		
Sequence Selector	Siz	e	Of	iset	Exposure 11me Raw	Raw	in Each Step		
	Х	Y	Х	Y	Nuw	Raw			
Sequence 1	1296	966	0	0	982	0	1		
Sequence 2	1296	966	0	0	982	0	1		
Sequence 3	1296	966	0	0	982	0	1		
Sequence 4	1296	966	0	0	982	0	1		
Sequence 5	1296	966	0	0	982	0	1		
Sequence 6	1296	966	0	0	982	0	1		
Sequence 7	1296	966	0	0	982	0	1		
Sequence 8	1296	966	0	0	982	0	1		
Sequence 9	1296	966	0	0	982	0	1		
Sequence 10	1296	966	0	0	982	0	1		

Caution :

- 1. In the Sequential EPS Trigger, LVAL sync operation is not available as the different exposure time and gain in each sequence table can be set. The trigger should be applied in LVAL Async timing.
- 2. In order to change values in the Sequence Table are changed, image capture must be stopped.

10.5.8 Delayed Readout EPS and PWC Modes

This mode can be used to delay the transmission of a captured image. When several cameras are triggered simultaneously and connected to the same GigE interface, it allows the cameras to be read out in sequence, preventing congestion.

The image data is not transmitted directly by the Frame Start Trigger and is stored in the memory located at the Ethernet Interface. By the leading edge of the Transfer Start Trigger,

the image data is output.

AD-130GE has up to 6 memories to store, and the stored image data can be output at the consecutive timing of Transfer Start Trigger.

After the stored image is transmitted by Transfer Start Trigger, as the memory has the space, it is possible to store new images by Frame Start Trigger.

This mode is available if Acquisition mode is set at "Continuous". This mode can work in EPS mode and PWC mode. This is not available for Sequence Trigger.

Frame Start Trigger								
Exposure								
GigE Memory	1 2 3 4 5 6							
			2	3	4	5	6	
Transfer Start								
Irigger								
GigE output		1	2	3	4	5	6	

The image is captured the following settings;

Frame start =ON, Trigger mode = ON and Exposure mode = Timed or Trigger Width Then, the image is moved to "Delayed Readout Mode", If Trigger Selector is set to Transfer Start.

□ Trigger Selector*	Frame Start	~
Trigger Mode*	Frame Start	
Trigger Software*	Transfer Start	
	11.00	

10.5.9 Multi ROI mode (Multi Region of Interest)

In this trigger mode, up to 5 ROIs located on one image can be output by one trigger input. By using this mode, the data stream can be smaller.

Each ROI can be overlapped.

Please note that if the accumulated data size is bigger than the data size of 1 frame, the frame rate will be reduced. Also accumulated heights for each ROI should be within 966 lines.

Fig.45 Multi mode concept

10.5.9.1 Setting parameters

In order to execute Multi ROI operation, it is necessary to set ROI mode and ROI size and offset.

ROI Mode:

Can be set 1 to 5. This sets the number of ROIs. For multi ROI operation, this should be set from 2 to 5. A total of 5 ROI can be set. ROI Selector: In ROI Selector, there is ROI 1 to 5 and each has Width, Height, Offset X and Offset Y settings.

The following is how the settings appear in the GUI.

ROI Mode	1
ROI Selector	ROI 1
Width	1296
Height	966
Offset X	0
Offset Y	0
	ROI Mode ROI Selector Width Height Offset X Offset Y

If ROI Mode is set to 1, only one ROI can be set.

In order to use Multi ROI, it should be set at 2 or more. A maximum of 5 ROIs can be set. The size for each ROI can be set by ROI selector.

10.5.9.2 Initial parameters

		Ca	mera 0			Са	imera 1	
ROI Mode			1				1	
ROI Selector	Width	Height	Offset X	Offset Y	Width	Height	Offset X	Offset Y
ROI 1	1296	966	0	0	1296	966	0	0
ROI 2	1296	966	0	0	1296	966	0	0
ROI 3	1296	966	0	0	1296	966	0	0
ROI 4	1296	966	0	0	1296	966	0	0
ROI 5	1296	966	0	0	1296	966	0	0

10.5.10 Optical Black transfer mode

It is possible for the user to decide whether the optical black (OB) portion of the image will be transferred or not. The optical black part can be used for black reference in the application software. Setting register 0xA41C turns the optical black transfer ON or OFF. The default condition is OFF.

	OB Transfer Mode OFF			OB Transfer Mode ON		
Full	1	1296	1	1296 1	312	
	970		5 970		16 horizontal pixels and 4 vertical pixels are added.	
JAI Partial Scan	1	1296	1	1024	1040 16 horizontal pixels are added	

Ш	Test Image Selector	Off	
	OB Transfer Enable	False 💌	
	🗄 c) Acquisition Control	True	₩ŝ.
Ш	Acquisition Mode	False	
	Acquisition Start		

10.6. Operation Mode and Functions matrix 10.6.1. Sync Mode = SYNC

Sensor		A Bay	D-130GE # /er(channe	t0 el1)	A Monocl	Auto Iris		
Trigge	r Input	Tri	gger 1 : Va	alid	Trig	ger 2 : Inv	valid	output
Mo	ode	e Shutter Partial Smear less		Smear less	Shutter	Partial	Smear less	(note2)
1	Continuous	Yes	Yes	No	Yes	← (note1)	No	Yes(*2)
2	Edge Pre-select (EPS)	Yes	Yes	Yes	Yes	÷	←	No
3	Pulse Width Control (PWC)	Not applicable	Yes	Yes	Not applicable	\leftarrow	←	No
4	RCT	_	_	—	_	_	—	_
5	Sequentia l EPS	Yes	Yes	Yes	Yes	Yes	Yes	No
6	Delayed Readout EPS	No	Yes	Yes	Yes	\leftarrow	←	No
7	Delayed Readout PWC	No	Yes	Yes	No	\leftarrow	←	No

Note 1: " \leftarrow " means that the setting depends on channel 1.

Note 2: Video signal for auto iris uses the output can be selected in Iris Signal Output Mode.

Note 3: If Sync mode is set to Sync, RCT is not available. 10.6.2 SYNC Mode = Async

Ser	isor	Bay	ver(channe	el1)	Monoc	hrome(cha	annel2)	Auto Iric	
Trigge	r Input	Tri	gger 1 : Va	alid	Trig	valid			
Mo	de	Shutter	Partial	Smear less	Shutter	Partial	Smear less	(note2)	
1	Continuous	Yes	Yes	No	Yes	Yes	No	Yes (*2)	
2	Edge Pre-select (EPS)	Yes	Yes	Yes	Yes	Yes	Yes	No	
3	Pulse Width Control (PW)	Not applicable	Yes	Yes	Not applicable	Yes	Yes	No	
4	RCT	Yes	Yes	Automatically ON	Yes	Yes	Automatically ON	Yes(*2)	
5	Sequentia l EPS	Yes	Yes	Yes	Yes	Yes	Yes	No	
6	Delayed Readout EPS	Yes	Yes	Yes	Yes	Yes	Yes	No	
7	Delayed Readout PWC	No	Yes	Yes	No	Yes	Yes	No	

Note 1: " \leftarrow " means that the setting depends on channel 1.

Note 2: Video signal for auto iris uses the signal can be selected in Iris Signal Output Mode.

11. Other functions

11.1. Basic functions

The AD-130GE is based on a dichroic prism, allowing precise separation of the visible (color) and near-infrared parts of the spectrum into two separate channels. The visible (color) channel is referred to as Channel 1 and the near-infrared channel is referred to as Channel 2. Channel 1 and 2 can be configured to operate separately or synchronously. When operating separately each channel can be triggered independently.

The AD-130GE can operate in Continuous (free-run) mode or in triggered modes. The variable partial scan mode provides higher frame rates at lower vertical resolution.

11.1.1 2CCD optical assembly

The dichroic prism incorporated in the AD-130GE separates the visible (color) part of the spectrum into a wavelength band from 400nm to 650nm (Channel 1) and the near-IR part into a band ranging from 760 nm to 1000 nm (Channel 2).

The figure below shows the concept of the separation into visible and near-IR bands.

Fig.46 Conceptual diagram for 2CCD prism optics

11.1.2 Electronic shutter

The AD-130GE has three shutter modes: programmable exposure, GenICam standard Exposure Time Abs, and auto shutter.

Exposure Time Abs (GenICam Standard)

This is a function specified in the GenlCam standard.

The shutter speed can be entered as an absolute exposure time in microseconds (μ s) in register address 0xA018. The entered absolute time (Time Abs) is then converted to programmable exposure (PE) value inside the camera.

The calculating formula below shows the relationship between the PE values used by the

camera for the different readout modes. Due to rounding down of calculations, some discrepancies may occur.

The relation between PE value and Time Abs Normal readout PE= INT (Exposure time) µs / (1660/51324000) (Note: INT means round down.) Note:The minimum value in normal readout is 16µs.

In the AD-130GE, previous settings are also available in JAI Acquisition Control.

Ξ	d) JAI Acquisition Control		
	Acquisition Frame Rate (JAI)	Full Speed	
	Shutter Mode	Programmable Exposure in lines	
	Exposure Time Raw (JAI)	972	
	Exposure Time (us) (JAI)	32502	
	Exposure Mode (JAI)	Continuous trigger	
	Auto Exposure Value	0	
	Smearless Enable	False	

Programmable Exposure

Exposure time can be controlled in 1 L unit (32.344μ s) from 0L to 982L. As the overhead of 0.4L is added, the actual shutter time is from 0.4L to 982L in the range from 0.4L to 982L. 982 L is the shutter OFF. The actual shutter speed for each operation mode is shown below.

Mode	Read Out	Minimum shutter speed	Maximum shutter speed
Continuous, EPS/RCT	Full, Partial	11.49µs (=1/87000s)	1 Frame
PWC	Full, Partial	32.344µs x 2L+11.49µs(0.4L)= 76.111µs (approx. 1/13,000s)	60 Frames (2 seconds)

Note: In Pulse Width mode, the minimum trigger pulse width must be >2LVAL.

Auto shutter

Auto shutter works in the range of 1/31 to 1/325 sec depending on the incoming light.

🗆 d) JAI Acquisition Control

Acquisition Frame Rate (JAI)	Full Speed
Shutter Mode	🗖 Auto Exposure Constantly 🛛 🛛 💌
Exposure Time Raw (JAI)	Programmable Exposure in lines
Exposure Time (us) (JAI)	Programmable Exposure (us)
Exposure Mode (JAI)	Auto Exposure Constantly

GPIO in combination with Pulse Width trigger

More precise exposure time can be obtained by using GPIO in combination with Pulse Width mode. The clock generator and counter can be programmed in very fine increments.

11.1.3 Shading correction

The AD-130GE features a shading correction circuit that can be used for reducing shading resulting from illumination, lens vignetting or prism shading caused by lenses with a wide output aperture.

The shading correction circuit divides the image into horizontal and vertical fields, and adjusts these regions in relationship to the image center.

In the internal memory, factory data is stored. When the shading correction is ON, factory data is loaded.

If it is OFF, the calibration can be activated and the result can be stored in the user area for reuse. Each channel is treated separately. The shading correction works with all pixel formats, raw Bayer color, RGB color and monochrome.
11.1.4 White balance

When using the RGB 24-bit and RGB 30-bit output mode, the white balance function is available. It can be used in 3 ways:

- 1) Continuous (tracking) Automatic White Balance, AWB
- 2) One-push AWB
- 3) Manual white balance setting

Manual white balance is achieved by optimizing the manual gain settings for R channel and B channel.

Items	Continuous (tracking) AWB ⁽¹⁾	One-push AWB ⁽²⁾	Manual WB
Adjusting range	-7dB to +10dB	-7dB to +10dB	-7dB to +10dB
Possibility to store WB	No	Yes	Yes
settings			

1): When using Continuous AWB, results depend on the surface properties of the object.

2): One-push AWB may take up to 3 seconds to complete.

White Balance Measuring area

The user can select from the following 64 areas to use for detecting the area of white balance measurement. Each one or accumulated areas making rectangular shape as shown can be selected at the same time and if the entire area is used for white balance detection, all 64 areas can be selected.

Fig.47 White balance detecting area

11.1.5 Blemish compensation

The AD-130GE has a blemish compensation function.

In the factory, the data for blemish compensation is stored in the factory data. When the blemish compensation is set to ON, the factory data is loaded. The user can store the compensation data in the user area (1 to 3). When executing a blemish compensation, it can be done for white and black blemishes. The user can also set the threshold of detecting blemishes. Up to 32 blemishes can be compensated.

Fig 48. Blemish compensation

11.1.6 Test signal generator The AD-130GE has the following test generators built-in.

Address	Function	Read/Write	Size	Value
0xA13C	Test stream	RO	4	0=OFF 4=H Ramp scale 5=V Ramp scale
				6=Moving Ramp scale 8=Color bar (Normal) 9=Color bar (Vertical) 10=Moving color bar

11.2. Control Tool Screen

11.2.1 Feature Tree Information

🗞 Feature Properties 🚯 Fea	ature Tree Information 📝 Processing	
□ AD-130GE_#1	🚉 🧕 👌 🗁 Print 👻	
\end{split} Image Format Control	Asynchronous Image Recording	^
🚊 Acquisition Control	Skip Count	0
🚊 JAI Acquisition Control	Recording Count	0
🚊 Analog Control	Total Recorded Count	0
🚊 Digital Processing	Is Recording Running?	False
🚊 Digital IO Control	Recording Mode	List
😥 Pulse Generators	Camera configuration information (from XML-file)
🔁 Sequence Control	Camera model	AD130GE
	Camera vendor	JAI
LUI Controls	Tooltip	Camera Configuratio
Event Control	Standard name space	GEV
Action Control	GenAni version	211 build 0
UserSet Control	GenIGam schema version	101
	Device version	016
	Product GUID	AF3D71C9-7DDD-4
	Version GUID	
		HOHD/3D0-DFOB-
		00500000
	Tick Frequency (Hz)	0200000
	Gamera connection Open?	Irue
	Camera connection Open as ReadOnly?	False
II. I		10

11.2.2 Feature Properties (Guru)

a) Device Control

🗆 a) Device Control	
Device Vendor Name	JAI Ltd., Japan
Device Model Name	AD-130GE_#1
Device Version	0.0.2.0
FPGA Version	14
Device Manufacturer Info	Digital 2000 Progressive Scan
Device ID	A000003
Device User ID	
Device Scan Type	Areascan
Device Max Throughput	37558080
Sensor Type	AD-130GE Mono. Sensor (Interface #1)
Device Reset	Push to Execute Command>
DeviceTemperature in degrees Celsius	38.125

b) Image Format Control AD-130GE #0 (Color)

porteoremperature in apprese colorad	0.19996	
🗆 b) Image Format Control		
Pixel Format	8 Bit BAYRG	
Sensor Width	1296	
Sensor Height	966	
Sensor Taps	One	
Sensor Digitization Taps	One	
Width Max	1296	
Height Max	966	
ROI Mode	1	
ROI Selector	ROI 1	
Line Pitch	1296	
Sync Mode	Async	
JAI Partial Scan	False	
Test Image Selector	Off	
OB Transfer Enable	False	
🗆 a) Acquisition Control		

AD-130GE #1 (IR)

🗆 b) Image Format Control	
Pixel Format	8 Bit Monochrome
Sensor Width	1296
Sensor Height	966
Sensor Taps	One
Sensor Digitization Taps	One
Width Max	1296
Height Max	966
ROI Mode	1
ROI Selector	ROI 1
Width	1296
Height	966
Offset X	0
Offset Y	0
Line Pitch	1296
JAI Partial Scan	False
Test Image Selector	Off
OB Transfer Enable	False

c) Acquisition Control

	E c) Acquisition Control	
	Acquisition Mode	Continuous
	Acquisition Start	Push to Execute Command>
	Acquisition Stop	Push to Execute Command>
1	∃ Trigger Selector*	Frame Start
	Trigger Mode*	Off
	Trigger Software*	Push to Execute Command>
	Trigger Source*	Line5 – Optical In 1
	Trigger Activation*	Rising Edge
	Trigger Source Inverter	False
	Exposure Mode	Timed
	Exposure Time	32290
	Exposure Time (us)	32290
	Exposure Time (Raw)	972
	Pre-dump Mode	Off

d) JAI Acquisition Control

d) JAI Acquisition Control	
Acquisition Frame Rate (JAI)	Full Speed
Shutter Mode	Programmable Exposure in lines
Exposure Time Raw (JAI)	972
Exposure Time (us) (JAI)	32502
Exposure Mode (JAI)	Continuous trigger
Auto Exposure Value	0
Smearless Enable	False
🗆 e) Analog Control	

e) Analog Control AD-130GE #0 (Color)

🗆 e) Analog Control	
표 Gain Selector	Analog All
Gain Auto	Off
AGC Reference	0
Auto Gain Value	0
표 Black Level Selector	All
Balance White Auto	Off
JAI Balance White Auto Once	Push to Execute Command>
Status of video processing	Completed successfully
	Block0
AWB Area Enable All	65535
Iris Signal Output Mode	COD1
ASC Min.	95
ASC Max.	792
ASC Speed	8
AGC Min.	0
AGC Max.	593
AGC Speed	8
AD-130GE #1 (IR)	
🗆 e) Analog Control	
🖂 Gain Selector	Analog All
Gain (Raw)	0
Gain Auto	Off
AGC Reference	0
Auto Gain Value	0
Black Level Selector	All 💌
Black Setup Level (Raw)	512
Status of video processing	Completed successfully
E f) Digital Processing	

f) Digital Processing

f) Digital Processing	
🖻 Gamma Selector	Mono/Bayer
Gamma Set	1.0
Shading Correction Enable	False
Shading Correction Mode	Flat Shading
Perform Flat Shading Calibration	Push to Execute Command>
Blemish Reduction Enable	Disable
Perform Black Blemish Reduction Calibration	Push to Execute Command>
Perform White Blemish Reduction Calibration	Push to Execute Command>
Knee Enable	False
🖻 Knee Selector	Mono/Bayer
Knee Slope	2347
Knee Point	6864

g) Digital Control

🗆 g) Digital IO Control	
Line Selector	Line1 - TTL Out 1
Line Source	Off
Line Inverter	False
Line Status	False
Line Mode	Output
Line Format	TTL
Line Status All	128
User Output Selector	User Output 0
User Output Value	False
User Output Value All	0
Software Trigger 0	0
Software Trigger 1	0
Software Trigger 2	0
Software Trigger 3	0

h) Pulse Generator

🗆 h) Pulse Generators		· · · · · · · · · · · · · · · · · · ·
Clock Pre-scaler	1	
Pulse Generator Clock (MHz)	33.75	
Pulse Generator Selector	Pulse Generator 0	
Pulse Generator Length	1	
Pulse Generator Length (ms)	2,963E-05	
Pulse Generator Frequency (Hz)	3.375E+07	
Pulse Generator Start Point	0	
Pulse Generator Start Point (ms)	0	
Pulse Generator End Point	1	
Pulse Generator End Point (ms)	2,963E-05	
Pulse Generator pulse-width (ms)	2,963E-05	
Pulse Generator Repeat Count	0	
Pulse Generator Clear Activation	Free Run	
Pulse Generator Clear Source	Off	
Pulse Generator Inverter(Polarity)	False	

i) Sequence Control

i) Sequence Control	
Sequence Mode	Off
Sequence Repetition Count	0
Last Sequence	1
Sequence Selector	Sequence 1
Repeat Count in Each Step	1
Sequence Exposure Time Raw	0
Sequence Master Gain Raw	-1
Sequence ROI Size X	1296
Sequence ROI Size Y	966
Sequence ROI Offset X	0
Sequence ROI Offset Y	0
Reset Sequence Settings	Push to Execute Command>
□ 3 T 1 C+1	

j) Transport Layer Control

É	j) Transport Layer Control		4
	Payload Size	1251936	
	GigE Vision Major Version	1	
	GigE Vision Minor Version	1	
	Is Big Endian	True	
	Character Set	UTF8	
Ξ	Interface Selector	0	
	MAC Address	00-0C-DF-03-F0-E2	
	Supported LLA	True	
	Supported DHCP	True	
	Supported Persistent IP	True	
	Current IP Configuration LLA	True	
	Current IP Configuration DHCP	True	
	Current IP Configuration Persistent IP	False	
	Current IP Address	169.254.1.210	
	Current Subnet Mask	255.255.0.0	
	Current Default Gateway	0000	
	Persistent IP Address	192.168.100.2	
	Persistent Subnet Mask	255,255,255,0	
	Persistent Default Gateway	0000	
Ξ	GigE Vision Supported Option Selector	Link Local Address configuration	
	Supported Option	True	
	First URL	Local: JAI AD-130GE 1 Ver016.zip:243F0000:9a60	
	Second URL		
	Number Of Interfaces	1	
	Message Channel Count	1	
	Stream Channel Count	1	
	Supported Optional Commands EVENTDATA	False	
	Supported Optional Commands EVENT	True	
	Supported Optional Commands PACKET RESEND	True	
	Supported Optional Commands WRITEMEM	True	
	Supported Optional Commands Concatenation	True	
	Heartbeat Timeout	40000	
	Timestamp Tick Frequency	62500000	
	Timestamp Control Latch	Push to Execute Command>	
	Timestamp Control Beset	Push to Execute Command>	
	Timestamp Tick Value		
	Control Channel Privilege	ControlAccess	
	Message Channel Port	1296	
	Message Channel Destination Address	169 254 181 73	-1
	Message Channel Transmission Timeout (ms)	300	
	Message Channel Retry Count	2	_
	Message Channel Source Port	1296	
F	Stream Channel Selector	0	~
	Stream Channel Port	0	
	Do Not Fragment	True	-
	Packet Size	1476	
	Packet Delay#	2000	
	Stream Channel Destination Address	0000	
	Stream Channel Source Port	0	
		0	

CONTRACTOR DATE OF A DECISION OF A DECISIONO	N	
🗆 k) LUT Controls		
LUT Enable	False	
LUT Selector	Green, Bayer or Monochrome	
E LUT Index*	0	
LUT Value All	Byte[] Array	
I) Event Control		
Event Selector	Acquisition Trigger	
Event Notification	Off	
Acquisition Trigger Event Data		
Event ID		
Frame ID		
Timestamp		
Acquisition Start Event Data		
Event ID		
Timestamo		
Acquisition End Event Data		
Event ID		
Timestamo		
E Exposure Start Event Data		
Event ID		
Frame ID		
Timestamo		
E Exposure End Event Data		
Event ID		
Frame ID		
Timestano		
E Anyl ine AnyEdge Event Data		
Event ID		
Timestamo		
E UndatedAllEeatures Event Data		
Europhile Contraction Contraction		
Timestamo		
ProcessingDone Fugert Data		
EuropeasingDone Event Data		
Timestane		
VideeRecomeChanged Event Data		
El Videoraramsonanged Event Data		
Timestane		
Charles amp		
E UppunParamsUnanged Event Data		
Event ID		
Timestamp		
m) Action Control	0.00	
Device Key	0x00	
El Action Selector	1	
Group Key	0x00	
Group Mask	UxUU	
la n) UserSet Control	E	
Useraet Selector	Factory	¥
UserSet Load	Push to Execute Command>	
UserSet Save	(Push to Execute Command>	~

k) LUT l) Event m) Action and n) User Controls

How to check XML file All functions and registers are stored in the camera as XML file. The XML is saved in the following folder.

🖕 🛅 Program Files
🗊 🛅 Apple Software Update
🛓 💼 Canon
🛓 💼 Cisco
🛓 🧀 Common Files
ComPlus Applications
🗊 🛅 Conduit
ConduitEngine
🗈 🛅 Dell
DualTapAccuPiXEL
🖬 💼 GenICam_v2_0
InstallShield Installation Information
😖 🧰 Din
Casha
Gantagi

12. External Appearance and Dimensions

Fig. 49 Dimensions

Specifications Spectral response 13.

13.1.

Fig. 50 Total spectral response including prism and sensor (Monochrome IR)

13.2. Specification Table

Crecifications	AD-130GE	
specifications	Color Imager channel	Monochrome Near-IR Imager ch.
Optical system	1/3 inch type F2 prism	
Scanning system	Progre	ssive scan
Synchronization	Int	. X-tal
Frame Rate Full scan	31.484 frames / sec. Pr	ogressive (966 lines/frame)
Pixel clock	51.	324MHz
Line frequency	30.918 KHz (166)	0 pixel clocks / line)
Image sensor	1/3 inch Bayer color IT CCD ICX44/	1/3 inch Monochrome IR IT CCD ICX44/
Sensing area	4.86 (H) ×	x 3.63 (V) mm
Cell size	3.75 (H)	x 3.75(V) μm
Active pixels	1296(H) x 966 (V)
Pixels in Video output Full Partial	1296 (h) x 966 (v) 31.4 Scan height In conjunction with ROI, if JAI Partial automa	<pre>484 fps. H = 30.918 kHz 8 to 966 lines, Scan is set to ON, Offset Y and Height is tically set.</pre>
Output readout	Sync / async (Color and IR outpu	uts readout) selected by Sync mode
	0.4 lux	0.02 µW / cm ² at 800nm
Sensitivity on sensor	Max. Gain, Shutter OFF, 50% Video Level	Max. Gain, Shutter OFF, 50% Video Level, F2.2
S/N (dB)	More than 52dB (G-ch, 0dB) 10bit	More than 54 dB (0dB) 10bit
Iris video output, Analog	0.7 V p-p (without Sync)	
Digital Video Output	Via RJ-45-1(GigE1) BayRG8, BayRG10, BayRG12, RGB8Packed , RGB10V1_Packed, RGB10V2_Packed	Via RJ-45-2 (GigE2) Mono8, Mono10, Mono10_Packed, Mono12_Packed, Mono12
White balance	Gain range: -7dB to +10dB Manual: 2800K to 9000K One-push: 2800K to 9000K Continuous: 2800K to 9000K Fixed: 3200K,4600K,5600K	Not applicable
Input signals	(TTL/75Ω) x2, LVDS x 1 Hirose 6 pin OPT x2 HIROSE 12-pin	
Output signals	TTL x 1 OPT x 2	Hirose 6 pin Hirose 12 pin
Gain	1) Master Gain: 0dB to +21dB R,B Gain : -7dB to +10dB 2) AGC: 0dB to +21dB	1) Master Gain: -3dB to +21dB 2) AGC: 0dB to +21dB
LUT/Gamma	1.0/0.6/0.45/LUT	
Shading compensation	ON/OFF (Color RGB and Mono) Color: Color and flat shading, IR : Flat shading	
Blemish compensation	Built in	
GPIO Module Input /Output switch Clock Generator(one) Pulse generator (Four)	Configurable 14 12 bit counter b 20-bit counter programmable for l	I-in / 32-out switch based on pixel clock ength, start point, stop point, repeat
OB area transfer mode	ON In case of ON, 970 lines in vertical a	nd 1312 clocks in horizontal are output.
Event message	Exposure start, Exposure end,	Trigger IN, Video start, Video end

Flastropic Chuttor	
	11.40 us to $21.7(1mc/0.41$ to 0.021 in $11.cton)$
Exposure Time Abs	1/12 000(2 d) to Max 2 sec
	fine setting with CPIO and pulse width control
GPIO plus Pulse width	
Auto shutter	7JL (0 702L
Accumulation	LVAL synchronous or LVAL asynchronous automatic selection or manual
Control interface	Gigabit Ethernet (IEEE802.3, ATA GigE Vision Standard) 2 lines
Functions controlled via GigE Vision Interface	Shutter, Gain, Black Level, Trigger mode, Read out mode, GPIO setup, ROI (GenICam mandatory functions)
GigE Vision Streaming Control	Packet size, Delayed (Frame) read-out, inter-packet delay Jumbo frame can be set at max. 16K (16020), Default packet size is 1476 Byte.
Indicators on rear panel	Power, Hardware trigger, GigE Link, GigE activity
Lens Mount	C-Mount (Rear protrusion less than 4mm). Designed for 3CCD camera
Flange back	17.526mm Tolerance 0 to -0.05mm
Operating temperature	-5°C to +45°C
Operating humidity	20 to 80% (non-condensing)
Storage temperature/humidity	-25°C to +60°C / 20% to 80% (non-condensing)
Vibration	3G (15Hz to 200Hz XYZ)
Shock	50G
Regulatory	CE (EN61000-6-2, EN61000-6-3), FCC Part 15 Class B, RoHS
Power	DC +10.8V to +26.4V, 8.0W (Typical, normal operation, +12VDC in) 8.7W(8 lines partial scan, +12VDC in)
Dimensions	55 (H) x55 (W) x 98.3(D) mm
Weight	340 g

Note: Above specifications are subject to change without notice. Note: Approximately 30 minute pre-heat required to meet specifications.

Appendix

1. Precautions

Personnel not trained in dealing with similar electronic devices should not service this camera. The camera contains components sensitive to electrostatic discharge. The handling of these devices should follow the requirements of electrostatic sensitive components.

Do not attempt to disassemble this camera.

Do not expose this camera to rain or moisture.

Do not face this camera towards the sun, extreme bright light or light reflecting objects, including laser sources.

When this camera is not in use, put the supplied lens cap on the lens mount. Handle this camera with the maximum care.

Operate this camera only from the type of power source indicated on the camera. Remove power from the camera during any modification work, such as changes of jumper and switch settings.

2. Typical Sensor Characteristics

The following effects may be observed on the video monitor screen. They do not indicate any fault of the camera, but do associate with typical sensor characteristics.

V. Aliasing

When the camera captures stripes, straight lines or similar sharp patterns, jagged image on the monitor may appear.

Blemishes

All cameras are shipped without visible image sensor blemishes.

Over time some pixel defects can occur. This does not have a practical effect on the operation of the camera. These will show up as white spots (blemishes).

Exposure to cosmic rays can cause blemishes to appear on the image sensor. Please take care to avoid exposure to cosmic rays during transportation and storage. It is recommended that sea shipment instead of air flight be used in order to limit the influence of cosmic rays on the camera. Pixel defects/blemishes also may emerge due to prolonged operation at elevated ambient temperature, due to high gain setting or during long time exposure. It is therefore recommended to operate the camera within its specifications.

Patterned Noise

When the sensor captures a dark object at high temperature or is used for long time integration, fixed pattern noise may appear in the image.

3. Caution when mounting a lens on the camera

When mounting a lens on the camera, dust particles in the air may settle on the surface of the lens or the image sensor of the camera. It is therefore important to keep the protective caps on the lens and on the camera until the lens is mounted. Point the lens mount of the camera downward to prevent dust particles from landing on the optical surfaces of the camera. This work should be done in a dust free environment. Do not touch any of the optical surfaces of the camera or the lens.

4. Caution when mounting the camera

When you mount the camera on your system, please make sure to use screws of the recommended length described in the following drawing. Longer screws may cause serious damage to the PCB inside the camera.

Mounting the camera to fixing plate

If you mount the tripod mounting plate, please use the provided screws.

Attaching the tripod mount

5. Exportation

When exporting this product, please follow the export regulation of your own country.

- 6. References
- 1. This manual for AD-130GE can be downloaded from www.jai.com
- 2. Datasheet for AD-130GE can be downloaded from www.jai.com
- 3. JAI SDK software can be downloaded from www.jai.com

AD-130GE

Change History

Month/Year	Revision	Changes
Feb. 2012	1.0	New issue
Mar. 2012	1.1	Delete color matrix, Correct the horizontal timing chart Correct offset and height figures in the partial scan

User's Record

Camera type:	AD-130GE
Revision:	
Serial No.	
Firmware version	ו

For camera revision history, please contact your local JAI distributor.

User's Mode Settings.

User's Modifications.

Company and product names mentioned in this manual are trademarks or registered trademarks of their respective owners. JAI A-S cannot be held responsible for any technical or typographical errors and reserves the right to make changes to products and documentation without prior notification.

Europe, Middle East & Africa Asia Pacific

Phone +45 4457 8888 Fax +45 4491 3252

Phone +81 45 440 0154 Fax +81 45 440 0166

Americas

Phone (toll-free) +1 800 445 5444 Phone +1 408 383 0300

Visit our web site at www.jai.com